Skip to main content

Interchange project wins major engineering award

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.
December 11, 2015 Read time: 2 mins
The new interchange offers increased capacity and safety and helps cut congestion

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.

FINLEY Engineering was the engineer of record for the four segmental bridges, Number 9, 11, 15 and 19, and provided construction engineering expertise. The segmental bridges were precast, balanced cantilever and erected with a 140.2m launching gantry. The bridge lengths varied from 335.3m to 746.76m in length and are 14.35m-wide, with a maximum span length of 81m. The curved segmental bridge ramps are the third level of the interchange with radii down to 180m and have a maximum superstructure deck height of 29m. above the proposed ground. All of the bridges are supported on 610mm pile foundations and reinforced concrete piers and caps. The project was carried out for 2697 Florida Department of Transportation, the contractor was the Community, Condotte, De Moya Joint Venture and the prime design consultant was BCC Engineering.

The bridge design offered unique challenges integrating underlying roadways, canals and MOT requirements into the layout of these segmental bridge ramps. This project was constructed in the Miami International Airport flight path and had FAA Requirements. The high level segmental flyovers are built over multiple roads that carry 430,000 vehicles/day and are the tightest elevation curves erected in the United States. The all overhead erection eliminated the need for falsework and cranes and eliminated five MOT phases that would have impacted traffic, thereby providing a safer work environment. FINLEY integrated the design into the construction while satisfying the strong aesthetic requirements. The design reduced maintenance and construction costs with the use of external tendons, Diabolos and deviators. The use of polystyrene in the hollow pier columns, except at the base of the caps, eliminated the need for interior formwork and reduced the overall mass of the structure and concrete required.

For more information on companies in this article

Related Content

  • Building the Pfänder tunnes
    February 10, 2012
    The second tube of the Pfänder Tunnel, Bregenz, Austria, where the new main tunnel has been excavated using a tunnel boring machine (TBM), is being constructed by Alpine BeMo Tunnelling. Tubbings have been installed as the inner tunnel lining, and as part of concreting for the inner shell, the FQ 1 crosscut, suitable for vehicles, is being constructed using a tunnel formwork carriage designed and supplied by PERI.
  • Building the Pfänder tunnes
    April 11, 2012
    The second tube of the Pfänder Tunnel, Bregenz, Austria, where the new main tunnel has been excavated using a tunnel boring machine (TBM), is being constructed by Alpine BeMo Tunnelling. Tubbings have been installed as the inner tunnel lining, and as part of concreting for the inner shell, the FQ 1 crosscut, suitable for vehicles, is being constructed using a tunnel formwork carriage designed and supplied by PERI.
  • Crane versatility helps with bridge building
    August 14, 2014
    The versatility and mobility of a Terex crawler crane has helped enormously with the construction of a new road bridge in Luxemburg. The Terex Superlift 3800 lattice boom crawler crane owned by Trier-based Steil Kranarbeiten was used to build a bridge in Luxemburg only two days after the same machine was used on a job in the Hunsrück mountain range. The machine was needed to lift a 440m long bridge across a valley, connecting a new section of highway.
  • Ship Canal Bridge project in Texas restarting
    December 10, 2021
    Work is restarting in Texas for the Ship Canal Bridge project.