Skip to main content

Interchange project wins major engineering award

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.
December 11, 2015 Read time: 2 mins
The new interchange offers increased capacity and safety and helps cut congestion

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.

FINLEY Engineering was the engineer of record for the four segmental bridges, Number 9, 11, 15 and 19, and provided construction engineering expertise. The segmental bridges were precast, balanced cantilever and erected with a 140.2m launching gantry. The bridge lengths varied from 335.3m to 746.76m in length and are 14.35m-wide, with a maximum span length of 81m. The curved segmental bridge ramps are the third level of the interchange with radii down to 180m and have a maximum superstructure deck height of 29m. above the proposed ground. All of the bridges are supported on 610mm pile foundations and reinforced concrete piers and caps. The project was carried out for 2697 Florida Department of Transportation, the contractor was the Community, Condotte, De Moya Joint Venture and the prime design consultant was BCC Engineering.

The bridge design offered unique challenges integrating underlying roadways, canals and MOT requirements into the layout of these segmental bridge ramps. This project was constructed in the Miami International Airport flight path and had FAA Requirements. The high level segmental flyovers are built over multiple roads that carry 430,000 vehicles/day and are the tightest elevation curves erected in the United States. The all overhead erection eliminated the need for falsework and cranes and eliminated five MOT phases that would have impacted traffic, thereby providing a safer work environment. FINLEY integrated the design into the construction while satisfying the strong aesthetic requirements. The design reduced maintenance and construction costs with the use of external tendons, Diabolos and deviators. The use of polystyrene in the hollow pier columns, except at the base of the caps, eliminated the need for interior formwork and reduced the overall mass of the structure and concrete required.

For more information on companies in this article

Related Content

  • 2010 GRAA Winner Profiles
    April 12, 2012
    Our series of profiles on winning projects from the 2010 Global Road Achievement (GRAA) Awards continues with the Construction Methodology Category won by Barrier Systems/Utah Department of Transportation With any major road construction project, the disruption of traffic flow is of paramount concern for engineers, workers and travellers, particularly as it relates to increased traffic delays and the safety of those driving through the work zone. In the state of Utah, USA, work was recently completed on
  • Lower noise surfaces under spotlight
    July 31, 2012
    Research is paramount in the development of better roads and safety. In a new series, Eurofile looks at the work and programmes of organisations dedicated to that end. In this issue: The German Federal Research Institute (BASt) The aims of BASt (an arm of the Federal Ministry of Transport) are to improve the cost-effectiveness of building and maintaining federal trunk roads, to increase the safety of road transport, to reduce the environmental impact produced by road traffic and construction and to improve
  • Multiple asphalt plants supply major highway construction
    July 12, 2012
    One company has produced eight asphalt plants for a major project, and others are introducing new models as Patrick Smith reports Algeria's US$11.2 billion East-West Highway development, the world's largest current highway construction project, forms part of the larger Trans-Maghreb Motorway project, and is scheduled for completion in 2010. It will run for 1,216km, ensuring the link between Annaba in the north-east and Tlemcen in the north-west, passing directly through 24 provinces and linking Algeria to T
  • Systra, Kiewit and Hatch to build third bridge in Kingston, Canada
    August 31, 2018
    Kingston, Canada, has selected Systra International Bridge Technologies, Peter Kiewit Sons and Hatch as the preferred consortium for the design and build Third Crossing project. Seven international teams answered the requests for proposals in February and 2018 with Systra, Kiewit and Hatch eventually chosen from a shortlist of three groups. The consortium will use an integrated project delivery model for the two-lane 1.2km bridge with a pedestrian and cycle path over the Cataraqui River will connect