Skip to main content

Interchange project wins major engineering award

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.
December 11, 2015 Read time: 2 mins
The new interchange offers increased capacity and safety and helps cut congestion

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.

FINLEY Engineering was the engineer of record for the four segmental bridges, Number 9, 11, 15 and 19, and provided construction engineering expertise. The segmental bridges were precast, balanced cantilever and erected with a 140.2m launching gantry. The bridge lengths varied from 335.3m to 746.76m in length and are 14.35m-wide, with a maximum span length of 81m. The curved segmental bridge ramps are the third level of the interchange with radii down to 180m and have a maximum superstructure deck height of 29m. above the proposed ground. All of the bridges are supported on 610mm pile foundations and reinforced concrete piers and caps. The project was carried out for 2697 Florida Department of Transportation, the contractor was the Community, Condotte, De Moya Joint Venture and the prime design consultant was BCC Engineering.

The bridge design offered unique challenges integrating underlying roadways, canals and MOT requirements into the layout of these segmental bridge ramps. This project was constructed in the Miami International Airport flight path and had FAA Requirements. The high level segmental flyovers are built over multiple roads that carry 430,000 vehicles/day and are the tightest elevation curves erected in the United States. The all overhead erection eliminated the need for falsework and cranes and eliminated five MOT phases that would have impacted traffic, thereby providing a safer work environment. FINLEY integrated the design into the construction while satisfying the strong aesthetic requirements. The design reduced maintenance and construction costs with the use of external tendons, Diabolos and deviators. The use of polystyrene in the hollow pier columns, except at the base of the caps, eliminated the need for interior formwork and reduced the overall mass of the structure and concrete required.

For more information on companies in this article

Related Content

  • US$471 million Indiana interstate interchange project
    March 14, 2024
    US$471 million will be spent in Indiana on interstate interchange upgrade work.
  • Texas DoT awards Atkins major contract
    July 18, 2014
    The Texas Department of Transportation (TxDOT) has awarded Atkins a major, six-year contract worth US$25 million. This will cover right-of-way (ROW) oversight, compliance review, and utility coordination services for transportation-related public-private partnership projects in the state. The deal calls for Atkins to serve as TxDOT’s management consultant, overseeing projects being hand;ed under development agreements, design-build contracts, and other delivery methods. Atkins has worked with TxDOT on a wid
  • Increasing demand for geosynthetics reinforcement
    May 3, 2012
    Geosynthetics have a wide variety of uses and these include providing extra strength in highway construction. Demand for geosynthetics in the United States alone is projected to increase 4.4% per year through to 2010 to more than 727 million m². Geosynthetics, used worldwide in the highway sector for strengthening, include geotextiles, geomembranes, geonets, geogrids, geosynthetic clay liners, preformed geocomposites, geocells and geofoams. The US advances will be fuelled by a recovery in nonbuilding constr
  • Increasing demand for geosynthetics reinforcement
    April 16, 2012
    Demand for geosynthetics in the United States alone is projected to increase 4.4% per year through to 2010 to more than 727 million m². Geosynthetics, used worldwide in the highway sector for strengthening, include geotextiles, geomembranes, geonets, geogrids, geosynthetic clay liners, preformed geocomposites, geocells and geofoams. The US advances will be fuelled by a recovery in nonbuilding construction. Additionally, geosynthetics will continue to increase their use in a wider range of applications