Skip to main content

Interchange project wins major engineering award

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.
December 11, 2015 Read time: 2 mins
The new interchange offers increased capacity and safety and helps cut congestion

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.

FINLEY Engineering was the engineer of record for the four segmental bridges, Number 9, 11, 15 and 19, and provided construction engineering expertise. The segmental bridges were precast, balanced cantilever and erected with a 140.2m launching gantry. The bridge lengths varied from 335.3m to 746.76m in length and are 14.35m-wide, with a maximum span length of 81m. The curved segmental bridge ramps are the third level of the interchange with radii down to 180m and have a maximum superstructure deck height of 29m. above the proposed ground. All of the bridges are supported on 610mm pile foundations and reinforced concrete piers and caps. The project was carried out for 2697 Florida Department of Transportation, the contractor was the Community, Condotte, De Moya Joint Venture and the prime design consultant was BCC Engineering.

The bridge design offered unique challenges integrating underlying roadways, canals and MOT requirements into the layout of these segmental bridge ramps. This project was constructed in the Miami International Airport flight path and had FAA Requirements. The high level segmental flyovers are built over multiple roads that carry 430,000 vehicles/day and are the tightest elevation curves erected in the United States. The all overhead erection eliminated the need for falsework and cranes and eliminated five MOT phases that would have impacted traffic, thereby providing a safer work environment. FINLEY integrated the design into the construction while satisfying the strong aesthetic requirements. The design reduced maintenance and construction costs with the use of external tendons, Diabolos and deviators. The use of polystyrene in the hollow pier columns, except at the base of the caps, eliminated the need for interior formwork and reduced the overall mass of the structure and concrete required.

For more information on companies in this article

Related Content

  • ARTBA makes awards
    February 29, 2012
    A series of highway and bridge projects across the US have been recognised for their contributions to environmental protection and mitigation.
  • Mersey Gateway Bridge has won IABSE’s Outstanding Structure Award
    September 19, 2019
    The UK’s Mersey Gateway Bridge has picked up the Outstanding Structure Award 2019 from IABSE, the International Association for Bridge and Structural Engineering* Judges described the bridge, designed by Cowi, as "an elegantly integrated solution for a multi-span concrete cable stay bridge in which form follows function". "Everyone involved with the design and construction the Mersey Gateway Bridge over the past six years knows that this is an incredibly special structure,” said Paul Sanders, Cowi’s p
  • Mersey Gateway Bridge has won IABSE’s Outstanding Structure Award
    June 25, 2019
    The UK’s Mersey Gateway Bridge has picked up the Outstanding Structure Award 2019 from IABSE, the International Association for Bridge and Structural Engineering*. Judges described the bridge, designed by Cowi, as "an elegantly integrated solution for a multi-span concrete cable stay bridge in which form follows function". "Everyone involved with the design and construction the Mersey Gateway Bridge over the past six years knows that this is an incredibly special structure,” said Paul Sanders, Cowi’s
  • Doka delivers on Kuwait's Nawaseeb Road
    May 11, 2021
    Along the 37km RA217 section of Nawaseeb Road poroject, Doka helped deliver Kuwait’s first in-situ cantilever bridge work.