Skip to main content

Interchange project wins major engineering award

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.
December 11, 2015 Read time: 2 mins
The new interchange offers increased capacity and safety and helps cut congestion

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.

FINLEY Engineering was the engineer of record for the four segmental bridges, Number 9, 11, 15 and 19, and provided construction engineering expertise. The segmental bridges were precast, balanced cantilever and erected with a 140.2m launching gantry. The bridge lengths varied from 335.3m to 746.76m in length and are 14.35m-wide, with a maximum span length of 81m. The curved segmental bridge ramps are the third level of the interchange with radii down to 180m and have a maximum superstructure deck height of 29m. above the proposed ground. All of the bridges are supported on 610mm pile foundations and reinforced concrete piers and caps. The project was carried out for 2697 Florida Department of Transportation, the contractor was the Community, Condotte, De Moya Joint Venture and the prime design consultant was BCC Engineering.

The bridge design offered unique challenges integrating underlying roadways, canals and MOT requirements into the layout of these segmental bridge ramps. This project was constructed in the Miami International Airport flight path and had FAA Requirements. The high level segmental flyovers are built over multiple roads that carry 430,000 vehicles/day and are the tightest elevation curves erected in the United States. The all overhead erection eliminated the need for falsework and cranes and eliminated five MOT phases that would have impacted traffic, thereby providing a safer work environment. FINLEY integrated the design into the construction while satisfying the strong aesthetic requirements. The design reduced maintenance and construction costs with the use of external tendons, Diabolos and deviators. The use of polystyrene in the hollow pier columns, except at the base of the caps, eliminated the need for interior formwork and reduced the overall mass of the structure and concrete required.

For more information on companies in this article

Related Content

  • Hanging out with Pilosio's Flydeck
    November 9, 2022
    The result is a perfectly horizontal plane for bridge workers in any situation where a suspended solution is needed.
  • First concrete beam raised for new Mersey bridge link
    December 11, 2015
    The first concrete bridge beam for a junction on the new Mersey Gateway route has been lifted into place. Work is underway on a major road junction for the Mersey Gateway Project, with the first of 156 of the concrete beams has been lifted into place as work ramps up at a major road junction. A 550tonne capacity crane lowered the 106tonne beam into position at the Bridgewater junction in Runcorn, where the new Astmoor Bridgewater viaduct is being built over the Bridgewater canal. Two elevated slip roads ar
  • Norway’s massive Rogfast Tunnel project
    December 11, 2018
    The world's longest and deepest road tunnel is underway in western Norway - Adrian Greeman reports
  • Beton bets on Amman’s CBS 120 SL Elba Concrete Mixing Plant
    May 15, 2019
    Ammann has assembled a plant that it says is highly competitive on price and performance for its customer Thomas Beton, a concrete supplier near Hamburg. Thomas Beton is among the leading producers of high-quality ready-mix concrete in northern Germany with daily deliveries to infrastructure sites as well as residential, commercial, industrial and agricultural projects. The new Ammann plant – the ninth Ammann-Elba solution for Beton – means that Beton is strengthening its local physical proximity to cu