Skip to main content

Interchange project wins major engineering award

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.
December 11, 2015 Read time: 2 mins
The new interchange offers increased capacity and safety and helps cut congestion

The Section 5 Palmetto SR826/836 Interchange project in Florida has won the 2016 FICE Engineering Excellence Grand Award in the Structures category.

FINLEY Engineering was the engineer of record for the four segmental bridges, Number 9, 11, 15 and 19, and provided construction engineering expertise. The segmental bridges were precast, balanced cantilever and erected with a 140.2m launching gantry. The bridge lengths varied from 335.3m to 746.76m in length and are 14.35m-wide, with a maximum span length of 81m. The curved segmental bridge ramps are the third level of the interchange with radii down to 180m and have a maximum superstructure deck height of 29m. above the proposed ground. All of the bridges are supported on 610mm pile foundations and reinforced concrete piers and caps. The project was carried out for 2697 Florida Department of Transportation, the contractor was the Community, Condotte, De Moya Joint Venture and the prime design consultant was BCC Engineering.

The bridge design offered unique challenges integrating underlying roadways, canals and MOT requirements into the layout of these segmental bridge ramps. This project was constructed in the Miami International Airport flight path and had FAA Requirements. The high level segmental flyovers are built over multiple roads that carry 430,000 vehicles/day and are the tightest elevation curves erected in the United States. The all overhead erection eliminated the need for falsework and cranes and eliminated five MOT phases that would have impacted traffic, thereby providing a safer work environment. FINLEY integrated the design into the construction while satisfying the strong aesthetic requirements. The design reduced maintenance and construction costs with the use of external tendons, Diabolos and deviators. The use of polystyrene in the hollow pier columns, except at the base of the caps, eliminated the need for interior formwork and reduced the overall mass of the structure and concrete required.

For more information on companies in this article

Related Content

  • Doka’s Voest Bridge bypass project
    February 10, 2020
    The Voest Bridge over the Danube River is part of the A7 Mühlkreis Autobahn through Linz, Austria, is 40 years. Two bypass bridges are being constructed alongside the existing cable-stayed bridge as part of the client ASFINAG’s strategy to boost traffic capacity - around 100,000 vehicles cross the old bridge each day.
  • Modern formwork systems - fast, flexible, safe
    February 21, 2012
    Speed of erection, safety, cost-efficiency and flexibility are among the attributes of modern formwork systems. Modern formwork and scaffolding systems are attractive in particular for their speed of erection, safety, cost-efficiency and flexibility.
  • Emergent markets key for formwork sector growth
    May 21, 2014
    Central and south-east Europe are hotbeds for new highway infrastructure projects utilising cutting-edge formwork solutions, while a number of leading formwork manufacturers are also looking at emergent markets for growth. Guy Woodford reports Travelling between Hungary’s capital Budapest and Southern Dalmatia now takes less time thanks to the Pan-European Corridor Vc – European route 73. Numerous tunnels and bridges are erected along the 397km stretch of the European route 73 through Bosnia owing to the
  • Cowi, BCC team up for Florida bridge deal
    May 10, 2024
    Cowi will be a subconsultant to BCC Engineering under the five-year district-wide contract with the Florida Department of Transportation in the US.