Skip to main content

Infrastructure condition warnings possible from research project

Advanced research could provide warnings as to damage to infrastructure. The research project has been carried out jointly by the National Physical Laboratory and University of Strathclyde. This uses mathematical techniques to provide early warning signals of structural damage in civil megastructures. The technique uses tipping point analysis to review data from structural health sensors on civil constructions, identifying early warning signs of upcoming damage. According to the research partners, this is f
November 18, 2016 Read time: 2 mins
Advanced research could provide warnings as to damage to infrastructure. The research project has been carried out jointly by the National Physical Laboratory and University of Strathclyde. This uses mathematical techniques to provide early warning signals of structural damage in civil megastructures. The technique uses tipping point analysis to review data from structural health sensors on civil constructions, identifying early warning signs of upcoming damage. According to the research partners, this is far more effective than the current method of on-site checks by eye. This technique could shift structural health monitoring to being preventative rather than reactive, and could be of great benefit to the construction industry. A good example of where early warning techniques could have helped is with the 20 day Forth Road Bridge closure in 2015. Instead of causing long periods of delays, the issue could have been spotted far earlier and dealt with before it required such extreme action.

The method is reported in a paper; ‘Tipping point analysis of cracking in reinforced concrete’. And the system is is about to be tested on steel beams, taking the mathematical theory and applying it to real life. The aim from this is to develop hardware and software products that, together with existing sensors, will provide a rapid and automated means of monitoring the health of civil and construction projects throughout their lifetime.

Related Content

  • IRD joins Canadian data vault project
    April 9, 2021
    IRD has joined the “Project to Enhance the Reliability and Development of Canada’s Prairie and Northern Region Transportation Network”.
  • Extreme climates pose tough duty cycles and challenges for testing procedures
    April 5, 2013
    This month we look at how pavement testing technology is responding to extremes of temperature, showcase concrete testing in Doha and look at how water drops could help identify delaminated bridge decks - Kristina Smith reports One of the biggest challenges that pavement engineers face is how to design for extremes of temperature. Designing for cold weather can result in problems at higher temperatures – and vice versa. In Scandinavia, generally a cold climate, they are facing this problem. In the summer,
  • Asphalt and bitumen - testing for performance
    February 29, 2012
    The stresses placed on modern asphalt and bitumen means that specialist equipment is essential to make sure performance specifications are met. As road traffic increases at a rapid pace and road safety becomes a priority issue, asphalt is put under increasingly higher stresses. For example, road surfaces are subject to compression, flexural tensions and tangential stresses: internal friction, depending on the aggregates, and the cohesion, guaranteed by bitumen's composition, are the two main properties whic
  • Bridge and tunnel concrete testing vital for longevity
    July 9, 2012
    Modern technology is making testing more efficient and reliable, increasing productivity and reducing costs, as Patrick Smith reports A few years ago, visual inspection of an 18-year-old bridge by ARRB in Australia identified considerable cracking in the precast, prestressed deck planks as well as in the cast in situ deck overlay. Laboratory examination indicated that the deck planks and the deck overlay were suffering from a strong case of alkali-aggregate reaction (AAR). Testing of concrete cores drilled