Skip to main content

Infrastructure condition warnings possible from research project

Advanced research could provide warnings as to damage to infrastructure. The research project has been carried out jointly by the National Physical Laboratory and University of Strathclyde. This uses mathematical techniques to provide early warning signals of structural damage in civil megastructures. The technique uses tipping point analysis to review data from structural health sensors on civil constructions, identifying early warning signs of upcoming damage. According to the research partners, this is f
November 18, 2016 Read time: 2 mins
Advanced research could provide warnings as to damage to infrastructure. The research project has been carried out jointly by the National Physical Laboratory and University of Strathclyde. This uses mathematical techniques to provide early warning signals of structural damage in civil megastructures. The technique uses tipping point analysis to review data from structural health sensors on civil constructions, identifying early warning signs of upcoming damage. According to the research partners, this is far more effective than the current method of on-site checks by eye. This technique could shift structural health monitoring to being preventative rather than reactive, and could be of great benefit to the construction industry. A good example of where early warning techniques could have helped is with the 20 day Forth Road Bridge closure in 2015. Instead of causing long periods of delays, the issue could have been spotted far earlier and dealt with before it required such extreme action.

The method is reported in a paper; ‘Tipping point analysis of cracking in reinforced concrete’. And the system is is about to be tested on steel beams, taking the mathematical theory and applying it to real life. The aim from this is to develop hardware and software products that, together with existing sensors, will provide a rapid and automated means of monitoring the health of civil and construction projects throughout their lifetime.

Related Content

  • New non-destructive testing technologies for roads and bridges
    July 11, 2018
    Two new technologies for non-destructive testing offer key benefits, one suiting road surfaces, the other suiting concrete structures - Kristina Smith reports Dynatest has developed a new way to measure and record the state of pavements, using a machine that travels at the same speed as traffic. The Rapid Pavement Tester (Raptor) has been seven years in the making and offers road owners the chance to have comprehensive surveys without the need to disrupt traffic. “People have been wanting to do this for
  • New concrete testing technologies improve speed, safety and quality
    July 8, 2016
    Developments in data processing and management are revolutionising the way concrete strengths can be measured and used to improve efficiencies - Kristina Smith reports on two new technologies A new system that uses thermal imaging to measure the strength of sprayed concrete tunnel linings is being trialled for the first time in London. The brainchild of Dr Benoit Jones, managing director of Inbye Engineering, the technique could lead to improvements in safety, quality and – in the longer run – productivi
  • Securing safer transportation infrastructure through non-destructive technology
    June 16, 2014
    Kevin Vine reports on the use of non-destructive testing for structural analysis of bridges Seven years ago, the overpass collapse in Laval, Québec that led to the death of five people brought to light severe issues with the state of the country’s bridges and transportation infrastructure. More recently, a crack in the Champlain Bridge to Montreal that forced over 160,000 commuters to find alternate routes to work reaffirmed a need for greater emphasis on early detection before a crisis occurs.
  • The Lessons of the Genoa bridge collapse
    April 23, 2019
    The partial collapse of the Polcevera viaduct, better known as the Morandi Bridge, has prompted debate regarding the technical and administrative aspects of maintaining road infrastructures. We discussed it with the engineer Gabriele Camomilla, former Director of Research and Maintenance of the Società Autostrade, who coordinated the only major structural intervention performed on the bridge, carried out in the early 1990s