Skip to main content

Final beam for Gerald Desmond Bridge replacement

The US$1.47 billion project was started in 2013 and open later this year.
By David Arminas May 1, 2020 Read time: 2 mins
Final beam for California’s first cable-stayed bridge for vehicles (photo courtesy Gerald Desmond Bridge Replacement Project)

The final steel beam has been installed for the replacement Port of Long Beach bridge - California’s first cable-stayed bridge for vehicles.

The beam was carefully lifted into position almost two years after construction began and which is expected to open later this year. The US$1.47 billion project to replace the current Gerald Desmond Bridge was started in 2013. The current bridge, finished in 1968, is a through arch steel structure that carries four lanes of Ocean Boulevard from Interstate 710 in Long Beach,

The new bridge will provide a higher clearance for cargo ships, possess a high degree of structural resilience against earthquakes and have a 100-year minimum lifespan. There will be six traffic lanes and four emergency shoulders, a bike and pedestrian path with scenic overlooks and more efficient transition ramps and connectors to improve traffic flow.

Assembling the main span over the Port’s Back Channel began in April 2018 with the lifting of the initial bolted sections of steel flooring to be attached to the first set of cables from the two 515-foot-tall towers.

Main-span construction requires deck sections to be added equally on both sides of the towers. Each floor beam is about 140 feet long and 10 feet tall, weighs about 32 tons and is connected to other steel components known as edge girders with more than 200 bolts.

Once a section of floor beams is bolted together, crews attach it to the tower with dozens of cables, then place pre-cast concrete road deck panels that form the road deck. There are 117 floor beams that support a main span that rises 205 feet over the water.

Additional major tasks left to do include a post-tensioning process by which cables are installed horizontally through the floor and pulled tight to increase the strength of the main span concrete deck.

The project is a joint effort by Caltrans – the California Department of Transportation - and the Port of Long Beach, with additional funding from the US Department of Transportation and the Los Angeles County Metropolitan Transportation Authority.

Related Content

  • Doka’s fine form
    June 18, 2012
    Doka’s SKE50 automatic climbing formwork are being used on two suspension towers for a new multi-lane cable-stayed bridge alongside an older viaduct in Zaporozhye, south-east Ukraine. On completion, this large-scale infrastructure project is set to massively reduce the traffic burden on the existing bridge and significantly improve the daily traffic situation at what is a major river crossing. The two separate roadway slabs are cable-stayed off twin H-shaped suspension towers 150metres high. Lead project co
  • Stantec: coming to an infrastructure site near you
    April 13, 2017
    Acquisitive Canadian firm Stantec is snapping up more transportation expertise as it moves out of its home North American market. David Arminas reports. Last December, politicians from the US states of Kentucky and Indiana celebrated the opening of the second of two major bridges. A ribbon-cutting ceremony took place in cold wintry weather on the new 762m-long cable-stayed Lewis and Clark Bridge. The event marked the finish of the prestigious three-and-half-year Ohio River Bridges Project.
  • California's SR 67 North Bay commuter route set for $1.6 billion reconstruction
    October 9, 2023
    A $1.6 billion reconstruction plan will reconfigure California's SR 67 North Bay commuter route, easing traffic congestion and tackling flooding concerns.
  • Developments in bridge monitoring technology
    July 9, 2012
    Advances in bridge monitoring technology should help ensure structural safety Highly productive, Fugro Aperio's ground penetrating radar system offers accurate scanning of bridge condition Bridge engineers can now benefit from a new technology designed to pinpoint shallow targets, such as masonry fixings, reinforcement bars or delamination between thin layers. This uses the latest high resolution ground penetrating radar (GPR) antenna and has been developed by Cambridge-based Fugro Aperio in the UK. Operati