Skip to main content

Towards Sustainable highways, from its foundation

Geosynthetic materials are increasing its significance in many applications in the civil and underground engineering. One of such application is in foundation stabilization for roads. A life cycle assessment (LCA) study on behalf of the European Association for Geosynthetic Manufacturers (EAGM)1 has re-vealed that the use of geosynthetic materials will contribute for sustainable highways. In road construction the sub-base needs to meet defined requirements for compaction and bearing ca-pacity. Improveme
June 29, 2015 Read time: 3 mins
Figure 2. Environmental impacts of the life cycle of 1 m road with different foundations, cases 2A, 2B and 2C. For each indi-cator, the case with highest environmental impacts is scaled to 100°%.
Geosynthetic materials are increasing its significance in many applications in the civil and underground engineering. One of such application is in foundation stabilization for roads. A life cycle assessment (LCA) study on behalf of the European Association for Geosynthetic Manufacturers (EAGM)1 has re-vealed that the use of geosynthetic materials will contribute for sustainable highways.

In road construction the sub-base needs to meet defined requirements for compaction and bearing ca-pacity. Improvements of some soil characteristics may be necessary while building on weak soils. Geo-synthetics materials is one approach to support such weak soils.

Today, there are 3 types of different geosynthetics that can be used for stabilization. Those 3 types are, extruded stretched grids, layed grids, and woven / knitted grids. For the LCA study, the average of the three is used to represent its performance. Polypropylene granulates are used as basic material to manufac-ture geogrids or wovens used in the study.

The environmental friendliness of the use of geosynthetic materials were found by carrying out a cradle-to-grave LCA2 study with data from numerous participating EAGM member companies which compared 3 cases. Those cases are conventional road (2A), a road reinforced with geosynthetics (2B) and a ce-ment/lime stabilised road (2C). Besides the construction of a conventional road with a non-frost sensitive gravel/sand layer (case A), soil improvement can be done with geosynthetic (case B) or by adding lime, cement or hydraulic binder (case C). Both cases B and C lead to a reduced thickness of the gravel/sand layer. Figure 1 illustrates the cross section of the road profile of the roads for all three alternatives.

The considered road is class III with the same finished surface level in all cases with lifetime of 30 years. The road is built on frost-sensitive soil class F3. In regions where the frost penetration depth does not reach the frost-sensitive soil, this soil needs not being removed. This is considered the standard case 2B.
The environmental performance is assessed with the following impact category indicators:

• Cumulative Energy Demand (Primary Energy Consumption, split into non-renewable and renewa-ble fractions),
• Climate Change (Global Warming Potential, GWP100),
• Photochemical Ozone Formation,
• Particulate Formation,
• Acidification,
• Eutrophication,
• Land competition, and
• Water use.

In Figure 2 the environmental impacts over the full life cycle of a road in class III with a length of 1 meter, a width of 12 meters are shown.

Compared to a conventional road (case 2A), the use of geosynthetics leads to lower environmental im-pacts concerning all indicators investigated (case 2B). At least a layer of 25 cm of gravel in a conventional road must be replaced by geosynthetics used in road foundation in order to cause the same or lower envi-ronmental impacts regarding all indicators. The comparison between a road stabilised with geosynthetics (case 2B) and a road stabilised with cement/lime (case 2C) is less clear-cut. However, among the 8 envi-ronmental performance assessed, the use of geosynthetics materials (case 2B) turned out to be the best op-tion among the 3 cases. The fact illustrates the potential contribution of geosynthetic materials towards sustainable highways. For the details of the study, please refer to the document available on EAGM homepage3.

Related Content

  • Innovative low temperature asphalt and aggregate options and advances
    May 16, 2014
    Studies show the asphalt sector has options for materials use that can lower costs and emissions, as well as increasing the use of recycling One study in the UK led by the Carbon Trust and Lafarge Tarmac has found that low temperature asphalt (LTA) could be used as an alternative to conventional asphalt on roads. Conventional asphalt is made when aggregates and bitumen are bound together at temperatures of between 180ºC-190ºC. However, the trial found that the alternative is able to bond road materia
  • Major Pisa link gets upgrade
    February 29, 2012
    Recycling with foamed bitumen is being used for lane reconstruction on the SP11 road in Italy, where contractor F.lli Lepri is carrying out work on a 14km section. The SP11 is an important link forming part of the Colline per Legoli Highway connecting the SS67 Tosco-Romagnola Highway near Pontedera with the southeast region of Pisa Province up to the borders of Florence Province.
  • Geosynthetics revolutionise ground stabilisation
    March 13, 2012
    As powerful fabrics, geosynthetics and geotextiles have a wide range of applications in many civil engineering applications including roads and airfields. Geosynthetics specialist Tensar is introducing a radical new product that it thinks will revolutionise the construction industry. According to the company, its new product represents the "biggest advance in ground stabilisation technology for 25 years. Six years in development, it is said to offer major improvements in aggregate confinement and soil stabi
  • Innovative road construction
    February 19, 2024
    Wirtgen is introducing an innovative concept for road construction in the shape of its new WRC 240(i) rock crusher. The machine has been developed from the firm’s proven soil stabiliser technology and is designed to break coarse rocks in-situ, as found in hand-packed pavement layers.