Skip to main content

Towards Sustainable highways, from its foundation

Geosynthetic materials are increasing its significance in many applications in the civil and underground engineering. One of such application is in foundation stabilization for roads. A life cycle assessment (LCA) study on behalf of the European Association for Geosynthetic Manufacturers (EAGM)1 has re-vealed that the use of geosynthetic materials will contribute for sustainable highways. In road construction the sub-base needs to meet defined requirements for compaction and bearing ca-pacity. Improveme
June 29, 2015 Read time: 3 mins
Figure 2. Environmental impacts of the life cycle of 1 m road with different foundations, cases 2A, 2B and 2C. For each indi-cator, the case with highest environmental impacts is scaled to 100°%.
Geosynthetic materials are increasing its significance in many applications in the civil and underground engineering. One of such application is in foundation stabilization for roads. A life cycle assessment (LCA) study on behalf of the European Association for Geosynthetic Manufacturers (EAGM)1 has re-vealed that the use of geosynthetic materials will contribute for sustainable highways.

In road construction the sub-base needs to meet defined requirements for compaction and bearing ca-pacity. Improvements of some soil characteristics may be necessary while building on weak soils. Geo-synthetics materials is one approach to support such weak soils.

Today, there are 3 types of different geosynthetics that can be used for stabilization. Those 3 types are, extruded stretched grids, layed grids, and woven / knitted grids. For the LCA study, the average of the three is used to represent its performance. Polypropylene granulates are used as basic material to manufac-ture geogrids or wovens used in the study.

The environmental friendliness of the use of geosynthetic materials were found by carrying out a cradle-to-grave LCA2 study with data from numerous participating EAGM member companies which compared 3 cases. Those cases are conventional road (2A), a road reinforced with geosynthetics (2B) and a ce-ment/lime stabilised road (2C). Besides the construction of a conventional road with a non-frost sensitive gravel/sand layer (case A), soil improvement can be done with geosynthetic (case B) or by adding lime, cement or hydraulic binder (case C). Both cases B and C lead to a reduced thickness of the gravel/sand layer. Figure 1 illustrates the cross section of the road profile of the roads for all three alternatives.

The considered road is class III with the same finished surface level in all cases with lifetime of 30 years. The road is built on frost-sensitive soil class F3. In regions where the frost penetration depth does not reach the frost-sensitive soil, this soil needs not being removed. This is considered the standard case 2B.
The environmental performance is assessed with the following impact category indicators:

• Cumulative Energy Demand (Primary Energy Consumption, split into non-renewable and renewa-ble fractions),
• Climate Change (Global Warming Potential, GWP100),
• Photochemical Ozone Formation,
• Particulate Formation,
• Acidification,
• Eutrophication,
• Land competition, and
• Water use.

In Figure 2 the environmental impacts over the full life cycle of a road in class III with a length of 1 meter, a width of 12 meters are shown.

Compared to a conventional road (case 2A), the use of geosynthetics leads to lower environmental im-pacts concerning all indicators investigated (case 2B). At least a layer of 25 cm of gravel in a conventional road must be replaced by geosynthetics used in road foundation in order to cause the same or lower envi-ronmental impacts regarding all indicators. The comparison between a road stabilised with geosynthetics (case 2B) and a road stabilised with cement/lime (case 2C) is less clear-cut. However, among the 8 envi-ronmental performance assessed, the use of geosynthetics materials (case 2B) turned out to be the best op-tion among the 3 cases. The fact illustrates the potential contribution of geosynthetic materials towards sustainable highways. For the details of the study, please refer to the document available on EAGM homepage3.

Related Content

  • IRF recommends action for greener roads
    July 4, 2012
    IRF's 2nd International Conference on Roads and Environment reveals how to make roads greener, cleaner and healthier, and follows through with action recommendations IRF's Conference in Geneva on 10-11 November, 2008 put three issues in sharp focus: innovative materials to save energy and other resources, inspiring solutions for water management; an integrated approach to noise and air pollution; and greenhouse gas (GHG) emissions monitoring, accounting and offsetting. Some 140 delegates from 36 countries l
  • Environmental impact drives warm mix growth
    November 14, 2012
    Warm mix asphalt can save energy and the environment, cutting emissions of carbon dioxide and other harmful gases, but are environmental arguments enough for clients and contractors? Kristina Smith asks Though popular in the United States, warm mix asphalt is still a technology waiting to happen in the rest of the world. Chemical companies who imagined a meteoric rise in sales are still waiting for the right economic conditions to allow warm mix to start taking serious market share from hot mix. “In Europe
  • Pavement recycling using cement
    July 12, 2012
    Carlos Jofré, technical director of the Spanish Institute of Cement and its Applications (IECA), introduces, on behalf of EUPAVE*, a sustainable technique to rehabilitate fatigued pavements Recycling of pavements is a technique whereby an existing degraded pavement is modified and transformed into a homogeneous structure that can support the traffic requirements. More specifically, it involves reusing the materials from the existing pavement for the construction of a new layer, including the pulverisation o
  • Improving a key route through Florida
    November 9, 2015
    Upgrading a key route through Florida – novel construction techniques are helping widen a road in difficult geological conditions – Lucio Garofalo reports. A major road widening project underway in Florida is due for completion soon. The work will improve an important section of road, reducing congestion at peak period and cutting travel times for drivers. The US 331/SR83 highway runs for some 79km and provides an important link in Florida’s Panhandle area, as it connects with Route 98.