Skip to main content

Speed hardening system improves tunnel construction

BASF claims that its latest innovation will help improve efficiency in tunnel construction operations. Developed by BASF's Construction Chemicals division the new Crystal Speed Hardening system (CSH) is an advanced admixture technology aimed directly at the tunneling market.
February 14, 2012 Read time: 2 mins
The new concrete concept from BASF will help cut curing times
2645 BASF claims that its latest innovation will help improve efficiency in tunnel construction operations. Developed by BASF's Construction Chemicals division the new Crystal Speed Hardening system (CSH) is an advanced admixture technology aimed directly at the tunneling market. This product offers increases in efficiency for concrete casting, both for precast segments and cast in-situ linings. The fast-curing concept allows the removal of formwork at an earlier stage of the casting process and increases productivity. The product can shorten the length of time that formwork or shuttering has to be kept in position or by reducing the number of sets of formwork required. In addition to supporting efficiency, the system helps reduce CO2 emissions, optimises material use and meets high quality specifications according to the firm. It does so by providing high early strength development whilst balancing the requirement for an optimum mix through the use of more binding material and reduced clinker content.

The CSH concept uses a new hardening accelerator, X-SEED, to boost early strength development by modifying the action mechanism of cement hydration. X-SEED is made of suspended CSH-seeding crystals: the material added is of the same nature as the final hydration products from the cement reaction with water. As the suspended crystals are considerably smaller than microsilicas, the surface is much more beneficial for accelerating the crystal growth during the early stages of concrete hardening. The product has already been tried and tested in a number of tunneling trials. The abbreviation CSH also refers to calcium silicate hydrates; the cement hydration products responsible for the compressive strength of concrete. Hydration speed depends on the chemical composition of clinker and other cementitious materials. To simplify the science, by using BASF's X-SEED admixtures, a liquid suspension of synthetic crystal seeds on the nano scale, the growth of calcium silicate hydrate crystals is significantly accelerated.

For more information on companies in this article

Related Content

  • New generation asphalt plants coming to market
    April 21, 2016
    New generation asphalt plants offer key benefits such as being more versatile, more mobile and able to cope with greater quantities of recycled asphalt pavement (RAP) - Mike Woof writes Several asphalt plant manufacturers are introducing new technologies for 2016. Key developments focus on issues such as the use of recycled asphalt pavement (RAP) and plant mobility, as well as improved mix control. Output quality has been improved by the latest technology, which can allow for much higher quantities of RA
  • Asphalt plants: alternative fuels on the horizon
    November 22, 2022
    Many asphalt plant manufacturers such as Ammann, Benninghoven and Fayat have already developed contingencies for alternative fuels.
  • Higher productivity, lower cost asphalt plants
    February 14, 2012
    Manufacturers are producing innovative asphalt equipment, and operators are benefiting from this as Patrick Smithreports. Asphalt plant manufacturers and operators are understandably placing great emphasis on higher productivity but with lower costs. At the same time they are aware of environmental issues and the ever-increasing use of recycled material in mixes.
  • New driveline developments boost machine efficiency
    April 24, 2013
    Advances in transmission technology will help to optimise machine performance – writes Mike Woof. As construction machines have become more sophisticated, so have the transmission systems used in items of equipment. Advances in electronics and software in particular have allowed the development of integrated transmissions. These operate more efficiently and help optimise power delivery from an engine, boosting torque response and cutting fuel consumption and emissions at the same time. The smart electronics