Skip to main content

Self-climbing formwork solution for bridge pylons

Harsco Infrastructure has provided self-climbing formwork (SCF), which is helping ensure quick and safe access during the construction of a 320m tall pylon for the world’s longest cable-stayed bridge.
February 27, 2012 Read time: 3 mins
Harsco Infrastructure’s self-climbing formwork is used on the 320m tall pylon of the Russky Island Bridge

Harsco Infrastructure has provided self-climbing formwork (SCF), which is helping ensure quick and safe access during the construction of a 320m tall pylon for the world’s longest cable-stayed bridge.

With its 1,100m central span the 3,100m Russky Island Bridge will ultimately be the world’s longest and tallest cable-stayed bridge. Traversing the Eastern Bosphorus, the US$490 million bridge will link the far east port of Vladivostok with Russky Island, which belongs to the Russian city.

Russian building contractor, SK MOST, is aiming for a record-breaking construction period
of just 43 months so that the bridge’s four-lane road is open in time for the 2868 Asia-Pacific Economic Cooperation summit at the end of 2012.

The 3234 Harsco solution provides a fully enclosed temporary working environment which protects against extreme weather conditions during construction of the pylon and its 70m tall approach piers, which together form part of the record-breaking bridge.    

SPECIFICATION
Russky Island Bridge


•Bridge deck width (steel structure): 21m

•Headroom under bridge: 70m

•Bridge length: 1,885.53m

•Total bridge length: 3,100m

•Largest span: 1,104m

•Height of bridge pylons: 320.9m

•Budget: €360 million
During the technical planning phase Harsco’s SCF team used its expertise to accelerate the construction schedule and ensure maximum safety, particularly for the two climbing units used on the pylon. This eliminated the need for any time-consuming conversion work and resulted in a formwork and platform solution that is said to be perfectly adapted to the tapering and inclined geometry of the pylon itself.


At the base, this calls for a ground plan of 7.8 x 13m with a 2m wall thickness, tapering to 7.1 x 7m with a 0.7m wall thickness at the top. The in-depth planning means that only a single work platform has to be removed from the SCF assembly, which is done during a pre-scheduled break in construction work. All other adjustments and climbing can be carried out safely and without holding up the site work unnecessarily.

To accommodate the tight construction schedule the system was specifically designed to allow adjustments to the SCF, and the 72 climbing cycles of 4.5m, to be performed quickly.

Rigid separation between the steelfixing levels and the shuttering and climbing operations means that once the steelfixing is completed, the formwork can be retracted and cleaned before the climbing shoes are fitted and the climbing rails raised and tied for the next pouring cycle. This allows the SCF platforms to be raised immediately after completion of the steelfixing and the formwork to be moved into its new position ready for the next pour. Once pouring is complete, the steelfixing for the next cycle can begin.

To protect men and materials from the severe climate, the self-climbing formwork is fully enclosed, complete with a modular, movable roof.

The exceptionally high load-bearing capacity of Harsco’s SCF brackets (150 kN vertically and 100 kN horizontally) is crucial to this project. The pylon’s special geometry, and continuous tapering, mean that only six of the 22 brackets employed actually climb vertically, with the others climbing at transverse and often changing angles of up to 5% from the vertical. Despite its high load-bearing capacity each SCF bracket requires just a single tie, with installation of the tie cones being a simple task. The cones only need to be positioned at the correct horizontal intervals, and unlike pairs of cones, they do not need to be set at a precisely measured angle.

Harsco is providing a formwork foreman and a number of technicians to support the project and ensure that the meticulously planned work processes are followed on site.

For more information on companies in this article

Related Content

  • Special formwork solution for tricky Orinoco project
    April 24, 2013
    Taking a road and rail link across one of the biggest rivers in South America, together with its swamps and flood plain, calls for a new crossing of superlative dimensions. Two 135.5m pylons for the third bridge across the Orinoco River in Venezuela are taking shape with the Venezuelan government investing in the showcase project at Caicara del Orinoco. The bridge will have an overall length of 11.125km on completion, which is scheduled for 2015. The main bridge is 2.28km long, and the roadway is 55m above
  • Superlative formwork’s global appeal
    April 25, 2013
    The latest formwork solutions are enabling some tough bridge-building projects to be delivered in South America and Europe, while the world’s largest construction equipment show is seeing the merits of other cutting-edge formwork. Guy Woodford reports. Taking a road and rail link across one of South America’s largest rivers, together with its swamps and floodplain, calls for a new crossing of superlative dimensions. Two 135.5m pylons for the third bridge across the Orinoco River in Venezuela are taking shap
  • New bridge for old Russian city
    July 30, 2012
    Murom, one of Russia's best preserved old cities, is situated in the European part of the country, around 300km to the east of Moscow. The most important industry and economic activities are mechanical engineering along with timber and textiles. The location on the River Oka, a tributary of the Volga and thus an important waterway, as well as the good connections to important main roads and rail routes, are positive economic factors. It is near Murom that German formwork and scaffolding specialist PERI is p
  • Doka rises to the challenge on Turkey’s Eyiste Viaduct
    June 4, 2019
    Formwork specialist Doka recently rose to the challenge on Turkey’s Eyiste Viadust, the country’s highest bridge with piers up to 155m tall. The Eyiste Viaduct will be part of a route between Central Anatolia and Turkey’s Mediterranean region, shortening travel time between the cities of Konya and Alanya. Cantilever forming travellers and Doka’s automatic climbing formwork Xclimb 60 were part of the construction solution. The viaduct is nearly 1.4km long and carried by two abutments and eight piers, stret