Skip to main content

Holding back

AN INNOVATIVE slurry wall solution has been used by Bachy Soletanche at the Alderley Edge By-Pass project in the UK. Bachy Soletanche provided assistance for the A34 Alderley Edge by-pass project in the UK being carried out by main contractor Birse Civils. This solution was required to tackle challenges posed by the water table at the Welsh Row section. Bachy Soletanche used its experience with slurry cut-off walls, a technique rarely used in Britain on road construction, to benefit a tricky section of the
April 4, 2012 Read time: 4 mins
AN INNOVATIVE slurry wall solution has been used by 1485 Bachy Soletanche at the Alderley Edge By-Pass project in the UK. Bachy Soletanche provided assistance for the A34 Alderley Edge by-pass project in the UK being carried out by main contractor Birse Civils. This solution was required to tackle challenges posed by the water table at the Welsh Row section.

Bachy Soletanche used its experience with slurry cut-off walls, a technique rarely used in Britain on road construction, to benefit a tricky section of the project.

The A34 bypass around Alderley Edge in Cheshire is a major UK road project. The link crossed existing infrastructure, in particular the main Manchester to London railway link.

Due to environmental reasons the bypass has to run under the railway line with the road level in a cutting and the road box formation 6m below the ground level at the Welsh Row section.

The location posed several challenges for 1486 Birse Civils, as the ground to the north and south of the railway has a very shallow water table, ranging from 1-3m below ground level. In this particular area and in a wet period, the water table can rise to just below the surface.

The major issue is that cutting through this area would draw down the high water table, which could have an affect on the structural integrity of the railway track. And should the water table have been altered in any way it could have affected the surrounding area by way of drying out wet areas.

One of the biggest challenges facing the designer was to overcome the problem and create a barrier, preventing water seepage to maintain the natural water table levels. Several options were examined including sheet piling or piled wall techniques, but the most cost effective solution to this problem was to create a slurry cut-off wall. A slurry wall is a non-structural barrier that is constructed underground to impede groundwater flow and is often used on land reclamation projects.

Bachy Soletanche, along with Birse Civils, Cheshire East Council and geologists planned the details. The barrier was designed with an 800mm wide trench, a length of 1km and varying depths up to a maximum of 20m, forming a large rectangle.

Bachy Soletanche built the wall using a cement-bentonite slurry wall technique. Cement was added to the bentonite water slurry just before installation into the trench.

Previous ground strata sampling found that to the north of the railway line a trench of around 14m had to be dug, dropping down to 20m along the south side of the track. This was required to allow Bachy Soletanche to reach the impermeable layer of mudstone.

Due to the shallow excavations at the north side of the railway, a crawler excavator was used, working to a 14m depth. For the deepest sections of the slurry cut-off wall, to the south of the railway line, Bachy Soletanche used a crawler crane fitted with a clamshell grab to dig out the trenches. This was brought in from Spain especially for the project.

The road is being built within the impermeable barrier through the cutting under the railway line and rising out of the other side, so the road will ride over the impermeable barrier on the exit of the cut. The slurry wall provides a seepage-free rectangle and rainwater falling within the cut-off wall section passes through the highway drainage system. Once complete, the new road would provide a bypass to the west of Alderley Edge and Nether Alderley villages in Cheshire and will be 5.4km long.

For more information on companies in this article

Related Content

  • More Singapore work for Penta-Ocean and Bachy Soletanche
    August 6, 2018
    Singapore’s Land Transport Authority has awarded a design-build contract for a stretch of the North-South Corridor to Japanese firm Penta-Ocean Construction and Bachy Soletanche Singapore. Construction on the 1km tunnel between Suffolk Walk and Novena Rise, estimated to be worth around US$584 million, will start by the first quarter of 2019, according to a statement by the Authority. Works by the joint venture will include an underground pedestrian network, pedestrian overhead bridges, bus stops, shel
  • New highway building project for Manila
    June 16, 2016
    A major highway construction project is underway in the capital of the Philippines, Manila. When complete this will help cut congestion and journey times in the city, which suffers heavily from congestion. The project involves the construction of an urban highway overpass, passing through Metro Manila and stretching a length of 14km to join the NLEX highway in the north with the SLEX highway in the south. The PPP project is complex logistically, given the congested urban areas it crosses. Work commenced i
  • Efficient earthmoving builds new road links
    February 7, 2012
    Efficient earthmoving is allowing productive road construction in the Egyptian desert, Mike Woof reports. Despite ferocious desert temperatures, efficient earthmoving operations will help build new road links in Southern Egypt. Close to the Egyptian city of Assuit, the contractor Orascom is working on three key desert highway projects that will provide vital transport connections for the country's growing economy.
  • New Moscow bus terminal
    June 25, 2018
    Construction work for a new bus terminal in Moscow is benefiting from the assistance of eight items of construction equipment from Liebherr. In all, the project is using seven crawler cranes and a piling ring that have been supplied by Liebherr for the work. This urban construction project is for an ultra-modern bus terminal, which will feature a capacity of 15,000 passengers/day. Approximately 1,600 bus services are expected/day and at peak times the facility will handle 1,000 passengers/hour. The new bus