Skip to main content

Assessing the risk of tunnels inn urban areas

A new technique for assessing the impacts of tunnels on nearby buildings and structures will allow a more realistic establishment of risk and could therefore reduce project insurance premiums
February 15, 2012 Read time: 2 mins

A new technique for assessing the impacts of tunnels on nearby buildings and structures will allow a more realistic establishment of risk and could therefore reduce project insurance premiums

Current ground movement predictions are based on empirical values and can over-estimate the potential damage to buildings, leading to unnecessary protection measures and therefore unnecessary cost for the client.

Dr Nagen Loganathan, tunnelling expert with 2693 Parsons Brinckerhoff, has designed a series of tools which can help designers assess risks to nearby buildings, structures and utilities.

And a new flow chart combines these tools to take designers through the steps needed to assess whether mitigation measures are needed for both piled and shallow foundations.

"In urban environments, tunnelling risks are particularly high because of their potential impacts on adjacent structures and utilities," said Loganathan who has published details of the new approach in his paper 'An Innovative Method for assessing Tunnelling Induced Risks to Adjacent Structures'.

"The monograph that I produced introduces a methodology to minimise those risks by identifying ground-loss and deformation mechanisms associated with tunnelling." Ground movements due to tunnelling are caused by groundloss as the tunnel boring machine (TBM) moves through the ground.

Loganathan has developed equations to calculate the groundloss due to the face of the TBM, the shield and the tail, and he has come up with formulae to show settlement at the surface, below the surface and lateral deformation.

Finally, a new set of tables predicts the impact of tunnelling on piles, showing how the piles will move as the TBM passes: pile head settlement; induced bending moment and axial down drag.

These tools could be particularly useful in the early stages of design when different routes and options are under consideration.

When a TBM face pressure is greater than the earth pressure at the face, the ground is pushed away from the TBM face, inducing heave at the surface. When the TBM has passed, a positive shield and tail loss occurs (closing of the physical gap), meaning the ground will move toward the tunnel, resulting in ground settlement.

For more information on companies in this article

Related Content

  • Assessing the risk of tunnels inn urban areas
    March 2, 2012
    A new technique for assessing the impacts of tunnels on nearby buildings and structures will allow a more realistic establishment of risk and could therefore reduce project insurance premiums
  • British Tunnelling Society conference: digging deep for data
    December 13, 2016
    Tunnelling innovation is creating mountains of data for contractors and designers, delegates to a recent British Tunnelling Society (BTS) conference heard Successful innovation in tunnelling techniques and technologies is creating more and more data, thanks to digitalisation.
  • Bertha ends her Alaskan Way voyage in Seattle
    December 21, 2017
    Seattle's State Route 99 viaduct is coming down. David Arminas was on site. Bertha, the world’s largest diameter earth pressure balance tunnel boring machine, with a cutterhead diameter of 17.5m, is no more. Her 2.7km journey underneath the waterfront area of Seattle finished on April 4 and the power went off for the last time on an extraordinary TBM that had finally completed an extraordinary job. “A small sidewalk job would have had more impact on city traffic than we have had,” says Brian Russell a v
  • Improving a key route through Florida
    November 9, 2015
    Upgrading a key route through Florida – novel construction techniques are helping widen a road in difficult geological conditions – Lucio Garofalo reports. A major road widening project underway in Florida is due for completion soon. The work will improve an important section of road, reducing congestion at peak period and cutting travel times for drivers. The US 331/SR83 highway runs for some 79km and provides an important link in Florida’s Panhandle area, as it connects with Route 98.