Skip to main content

Non-contact sensing from SICK

A novel non-contact radar sensing technology from SICK offers accurate and reliable real-time monitoring of bulk solid levels for the storage and handling of mineral products
October 4, 2021 Read time: 2 mins
Accurate silo measurement technology is now offered by SICK

The SICK SicWave uses high-frequency 80 GHz free-space radar to overcome the limitations of low-frequency radar sensors or mechanical devices to achieve precision continuous level measurement.

The microwave pulses of the SICK SicWave sensors are claimed to penetrate through dust and material build-up to output accurate results. The SICK LBR SicWave is a bulk solids level sensor with a range of up to 120m. This can be used for continuous level measurement in production of products such as cement, concrete and gypsum for crushers and belt transfer, as well as for silos for storing products.

The firm claims that this technology can be used to manage the supply of bulk solids in storage vessels. It offers accurate level measurement using non-contact technology and is not disrupted by the presence of dust or build-up of residue, or by other obstructions in the vessel.

Positioned at the top of a silo, or over a heap or bunker, the SICK SicWave sensor sends a narrow beam of microwave radar pulses and uses the time-of-flight principle to return a high-quality signal even at long ranges or extreme temperatures and pressures. The SICK SicWave 80 GHz free-space radar sensors are a thousand times more sensitive than previous generation 26 GHz radar technologies ensuring high availability in challenging environments with minimal maintenance. The narrow field of view avoids the potential for false signals caused by deposits on walls or by obstructions inside the vessel.

For more information on companies in this article

Related Content

  • New radio wave technology assesses asphalt integrity
    March 14, 2017
    Real time information on asphalt density and uniformity can boost construction quality - *Roger Roberts, GSSI. Properly compacted asphalt is a major factor in the lifespan of a road, as inadequately compacted asphalt deteriorates at a more rapid rate than properly compacted material. With the billions spent on road construction and repairs each year, it has become a matter of urgency to find new technologies that can ensure the integrity of asphalt on newly paved roads. New radio wave technology is now avai
  • On track for excellence in asphalt plants
    May 30, 2013
    While one leading asphalt plant company has played a key role in the creation of the new Circuit of the Americas F1 racetrack, others have been releasing new plants and plant-related technology onto the market, some of which has been exhibited at major world industry shows. Guy Woodford reports. Astec played an important role in the new Circuit of the Americas Formula 1 racetrack in Austin, Texas. The asphalt base, binder, and surface courses for the 5.47km asphalt road course, which staged its first F1 rac
  • Asphalt plant innovations coming to market
    April 27, 2015
    A series of new advances in asphalt plant design are now coming to market - Mike Woof writes Key innovations in asphalt plant designs from major manufacturers will offer clients reductions in running costs along with gains in quality control and output. Several of the leading manufacturers are introducing new models that will deliver efficiency gains, as well as options for greater mobility and/or versatility. Swiss-based Ammann is introducing two new mobile plants, the EcoBatch and QuickBatch models,
  • Efficient construction leads to quality roads
    November 30, 2012
    Technology to assist the installation of quick laying, yet top-quality, road surfaces requiring less frequent repair, thus limiting costs and the number of construction sites, is being sought by highways authorities the world over. The European Union devised project ASPHALT (Advanced Galileo Navigation System for Asphalt Fleet Machines) for satellite navigation and fleet management may have found just what such authorities are looking for. Within the scope of the ASPHALT research project MOBA, together wit