Skip to main content

Bluesky Aerial Mapping sees the trees and not the forest

Scientists at the University of Lancaster in England are using 3D data produced by Bluesky to refine a tree failure-risk model Pinpointing trees that might collapse onto roads and other infrastructure currently uses complex wind analysis techniques to assign a level of risk to individual trees. The data is Bluesky’s UK National Tree Map, laser mapped 3D height models, colour infrared (CIR) data and soil data. It will help identify individual trees and their proximity to roads as well as electricity insta
February 6, 2017 Read time: 3 mins
It may look beautiful but just how safe is it?
Scientists at the University of Lancaster in England are using 3D data produced by Bluesky to refine a tree failure-risk model

Pinpointing trees that might collapse onto roads and other infrastructure currently uses complex wind analysis techniques to assign a level of risk to individual trees. The data is 6242 Bluesky’s UK National Tree Map, laser mapped 3D height models, colour infrared (CIR) data and soil data. It will help identify individual trees and their proximity to roads as well as electricity installations and rail infrastructure.

The data allows a more detailed assessment of tree location, health and other features that may cause failure. Bluesky says that this is the first tree failure prediction model to approach the problem using individual tree parameters, rather than entire tree stands.   

“The aim of the project is to develop a scientifically based, robust and objective method to predict tree failure in severe weather conditions,” said Alan Blackburn, senior lecturer at the university’s Lancaster Environment Centre.

“Using the Bluesky data, we will refine our existing model with better identification and location of individual trees and groups of trees. The data will also help us identify trees that may be in poor health or have other features that may contribute to failure, and therefore better inform pre-emptive measures.   

“We are also working with Bluesky to create a web-based GIS application embedding the prediction model. This would deliver the results to users across a range of sectors and applications in an intuitive and interactive map format.”

The first phase of work has been completed resulting in a functioning model that can run historic wind events or future wind predictions and assign a risk to each tree, explained James Eddy, technical director of Bluesky. “By improving the initial representation of tree characteristics and context with our National Tree Map data, LiDAR height models and NDVI classification, it is hoped it will be possible to simulate individual tree failures and their impact on infrastructure networks.”

The project - Delivering Resilient Power, Road and Rail Networks by Translating a Tree Failure Risk Model for Multi-Sector Applications - is led by Lancaster University with funding from NERC (Natural Environment Research Council) and Scottish Power.

Other stakeholders include UK Power Networks, Scottish Power, 4068 Transport Scotland, Scottish Water, Atkins Global, ADAS and the British Geological Survey.

For more information on companies in this article

Related Content

  • Funding secured for Data Sustains Life project
    February 3, 2025
    The UK’s TRL and University Hospital Southampton will collaborate on collision data to improve the safety of roads for all users.
  • Weighty matters for developing countries
    November 6, 2012
    One leading Weigh in Motion technology manufacturer is helping governments in developing countries reduce excessive road damage, while several others have seen their latest WIM systems recently used on the highways of Eastern Europe. Guy Woodford reports Recent Central Weighing WIM installations in Bangladesh are helping its national government reduce the financial burden of excessive road damage, while also protecting many bridges that are vital to transport and trade. The need for such installations was e
  • Managing resource to create more resilient roads
    June 22, 2018
    As pressure increases on the cost and availability of resources, investment in recycling technology continues to grow across the road building industry. To meet its full potential, a greater understanding is needed of material performance to allow the building of more resilient, sustainable and economic networks - *David Smith explains.
  • Cosmic rays to monitor bridge condition
    January 2, 2025
    Cosmic rays can be used to monitor bridge condition.