Skip to main content

Bluesky Aerial Mapping sees the trees and not the forest

Scientists at the University of Lancaster in England are using 3D data produced by Bluesky to refine a tree failure-risk model Pinpointing trees that might collapse onto roads and other infrastructure currently uses complex wind analysis techniques to assign a level of risk to individual trees. The data is Bluesky’s UK National Tree Map, laser mapped 3D height models, colour infrared (CIR) data and soil data. It will help identify individual trees and their proximity to roads as well as electricity insta
February 6, 2017 Read time: 3 mins
It may look beautiful but just how safe is it?
Scientists at the University of Lancaster in England are using 3D data produced by Bluesky to refine a tree failure-risk model

Pinpointing trees that might collapse onto roads and other infrastructure currently uses complex wind analysis techniques to assign a level of risk to individual trees. The data is 6242 Bluesky’s UK National Tree Map, laser mapped 3D height models, colour infrared (CIR) data and soil data. It will help identify individual trees and their proximity to roads as well as electricity installations and rail infrastructure.

The data allows a more detailed assessment of tree location, health and other features that may cause failure. Bluesky says that this is the first tree failure prediction model to approach the problem using individual tree parameters, rather than entire tree stands.   

“The aim of the project is to develop a scientifically based, robust and objective method to predict tree failure in severe weather conditions,” said Alan Blackburn, senior lecturer at the university’s Lancaster Environment Centre.

“Using the Bluesky data, we will refine our existing model with better identification and location of individual trees and groups of trees. The data will also help us identify trees that may be in poor health or have other features that may contribute to failure, and therefore better inform pre-emptive measures.   

“We are also working with Bluesky to create a web-based GIS application embedding the prediction model. This would deliver the results to users across a range of sectors and applications in an intuitive and interactive map format.”

The first phase of work has been completed resulting in a functioning model that can run historic wind events or future wind predictions and assign a risk to each tree, explained James Eddy, technical director of Bluesky. “By improving the initial representation of tree characteristics and context with our National Tree Map data, LiDAR height models and NDVI classification, it is hoped it will be possible to simulate individual tree failures and their impact on infrastructure networks.”

The project - Delivering Resilient Power, Road and Rail Networks by Translating a Tree Failure Risk Model for Multi-Sector Applications - is led by Lancaster University with funding from NERC (Natural Environment Research Council) and Scottish Power.

Other stakeholders include UK Power Networks, Scottish Power, 4068 Transport Scotland, Scottish Water, Atkins Global, ADAS and the British Geological Survey.

For more information on companies in this article

Related Content

  • Smarter transport solutions from TomTom
    January 4, 2016
    TomTom is introducing two novel products that help deliver smart traffic solutions, RoadDNA and its HAD map. The Road DNA will help make automated driving a reality, according to the firm. Designed with vehicle data storage and processing limitations in mind, RoadDNA delivers highly accurate location information that can easily be integrated into the onboard system of a vehicle. This allows a vehicle to continuously know exactly where it is located on the road. It offers highly accurate vehicle localisa
  • WiM eases bridge structural health worries
    March 22, 2024
    Concerns about ageing road bridges are leading road authorities to consider the case for using weigh-in-motion - WiM - solutions to monitor health of such infrastructure, writes Adam Hill.
  • Mobile mapping innovation
    June 1, 2022
    There are millions of kilometres of roads and features that need to be mapped in today’s world. We see a strong vision and application for the future, therefore Leica Geosystems, part of Hexagon, recently announced the introduction of the reality capture mobile mapping system Leica Pegasus TRK, introducing artificial intelligence, autonomous workflows and intuitive interfaces. This technology goes beyond the capabilities of what’s already been done, making it the perfect companion for today’s mobile mapping requirements.
  • WiM eases bridge health worries
    July 31, 2024
    Ageing road bridges are leading road authorities to consider the case for using weigh-in-motion - WiM - solutions to monitor the health of such infrastructure, writes Adam Hill.