Skip to main content

Tubeshor shoring system

By David Arminas December 10, 2024 Read time: 2 mins
The Tubeshor ATC contains a 450-tonne hydraulic cylinder coupled to a bladder accumulator which is pressurised to suit the individual prop design geo-load before dispatch

Altrad RMD Kwikform has launched a solution to reduce the effects of thermal loading - the Tubeshor Active Thermal Compensator, ATC.

The Tubeshor hybrid hydraulic shoring system is used for propping waler beams or capping beams of large excavations. Altrad RMD Kwikform, an above and below ground temporary works specialist, said it comes in a range of diameters to cater for all duties of shoring requirement.

An evolution of Tubeshor, the ATC Tubeshor accessory can reduce thermal loading by up to 90 percent compared to a mechanically locked-off prop, explained Ian Fryer, global product innovation director at Altrad RMD Kwikform.

Prop installation and pre-loading on site is carried out in the same way as for any standard proprietary prop; no special skills required. As Tubeshor ATC units are assembled directly into the prop makeup, standard prop end-fittings such as swivel units and spherical bearers can be used. Props can be installed into the excavation in the usual manner.

The Tubeshor ATC contains a 450-tonne hydraulic cylinder coupled to a bladder accumulator which is pressurised to suit the individual prop design geo-load before dispatch. Most of the time, the pressure in the accumulator exceeds that in the hydraulic system and normal prop stiffness results.

When higher temperature forces excessive prop thermal expansion, the compressed nitrogen in the accumulator comes into play and results in a phase of reduced prop stiffness. This means that a further increase in prop length resulting from thermal expansion does not result in the usual increase in prop load.

With less space taken up within the excavation, savings can be made on equipment, labour, transport and plant cost, as smaller plant can be used to install and remove the equipment.

Loads imposed on the permanent wall from the temporary props are reduced. This enables a lower cost wall design using less material and potentially reduces the volume of excavated soil, reducing project cost and further decreasing the carbon footprint.

The prop load can be read by direct inspection on site. There is also an option to use e-pins and wireless nodes to provide continuous prop load monitoring and data logging via a smartphone, tablet or laptop.
 

For more information on companies in this article

Related Content

  • Bitumen technology: three ways to more sustainable roads
    May 14, 2020
    This issue we look at three case studies showcasing new technologies designed to deliver more sustainable paving solutions.
  • Bomag is on track – London to Glasgow in 2 hours and 40 minutes
    July 1, 2022
    British Railways has big plans. Trains on the first 220 km from London Euston Station to Birmingham could be travelling at a speed of 360 km/h (225 mph) in as little as 10 years. The earthworks required for this are to be completed by as early as 2025. The project is considered one of the largest and most ambitious infrastructure projects in recent British history. It must meet the highest possible construction quality standards and evolve over the course of the project - setting new standards today and for tomorrow. The deployment of innovative BOMAG technologies and machines is therefore logical and consistent.
  • Advanced asphalt plants being developed
    April 7, 2017
    The Fayat Group is developing its asphalt plant range with its Marini-Ermont product offerings - Mike Woof writes The Fayat Group is a major player in the global asphalt plant sector with its Marini and Ermont brands and is further developing both product ranges. The latest machines have been designed to cater to a wide array of customer needs, from large, fixed high-production plants to its compact super portable units, as well as from high sophistication down to more basic technology for developing mar
  • Plant advances for asphalt production boost efficiency
    May 30, 2018
    Advances in asphalt plant technology will boost efficiency for producers, while increasing the percentage of recycled materials that can be used in the mix - Mike Woof writes. Asphalt plant technology continues to advance as the rival firms fine-tune their technologies for greater performance. New plants can give higher quality output due to new control technologies, while also allowing for recycled asphalt pavement (RAP) to be used more efficiently, while still ensuring tight mix specifications are met. A