Skip to main content

Terex Superlift 3800 crane rises to the challenge in Alsace

Crane service provider Sarens has used a Terex Superlift 3800 lattice boom crawler crane to lift a pedestrian and bicycle steel bridge over the A4 Autoroute near Schiltigheim, in the Aisace region of France. The job was out of the ordinary, according to the Sarens Group, a transport and specialised rigging specialist based in Wolvertem, Belgium. “We didn’t have a special permit for a heavy-load transport with the required weight,” said Sarens project manager Joost Elsen.
May 14, 2015 Read time: 4 mins
Up, up and away: Terex’s Superlift 3800 at work in the Alsace
Crane service provider Sarens has used a 1222 Terex Superlift 3800 lattice boom crawler crane to lift a pedestrian and bicycle steel bridge over the A4 Autoroute near Schiltigheim, in the Aisace region of France.

The job was out of the ordinary, according to the Sarens Group, a transport and specialised rigging specialist based in Wolvertem, Belgium. “We didn’t have a special permit for a heavy-load transport with the required weight,” said Sarens project manager Joost Elsen.

The first problem was getting the crane to the site in Schiltigheim, the largest suburb in the city of Strasbourg in north-east France, near the German border.

A special feature of the Superlift 3800 crane made it possible to overcome this challenge. Then “Quick Connection” makes it possible to disassemble the crane’s basic structure into two parts in order to significantly reduce the weights involved in transporting the machine.

Even so, a total of 56 transport vehicles were required to transport equipment for the job. Logistics were further complicated because the access road to the site was extremely narrow. Trucks had to drive on a gravel road for about 1km – in reverse – to reach the spot where the crane would be set up.

Despite this time-consuming procedure, the Sarens team was able to get the Superlift 3800 crane ready on time with four assembly technicians and the crane operator. “The crane’s ease of assembly literally paid for itself in this case,” Elsen said.

Since it required for the highway to be completely closed near Strasbourg, the team did not want to risk any delays. In order to affect traffic as little as possible, the lift was performed on a Saturday night.

To be sure of their ability to complete the task in time, they carried out a trial lift of the 162tonne bridge section in advance in order to test the crane, as well as the load-securing devices that would be used.

Another complication loomed. The crane operator would have only a 22m-wide area between the highway and parallel train tracks in which to maneuvre.

Sarens technicians set up the Superlift with an SSL1 configuration, a 54m main boom and 325tonnes of counterweight to allow the machine to pick up the bridge section within a working radius of 40m.

In order to prevent the 65m-long and 3.5m-wide load from swinging around when lifted, it was slung to a perfectly balanced spreader. This enabled the crane operator to safely lift the component 20m high. The main boom was then raised to reduce the working radius to 29m and then lower the Superlift counterweight radius from 18m to 11m.

With this compact configuration, the crane could turn 180° within the tight working area and swing the bridge over the highway. “To do this, we used the crane’s Vario Superlift system, which was developed precisely for this scenario,” said crane operator Michael Bräckle.

Once the bridge was over the highway, the crane moved forward about 12m under load to its final destination. The main boom was brought down and the Vario system was used to bring the SL counterweight back to a radius of 18m.

Finally, the bridge was lowered onto the bridge piers at the original working radius of about 40m.

Sarens is called upon from time to time to do close-up work and the company has three of the 650tonne Superlifts 3800 cranes in its fleet. All have a maximum load moment of 8.426m-tonnes and as standard come with the Terex fall protection system.

The Superlift 3800 crawler crane can be delivered with a main boom with an integrated wind kit, enabling it to erect wind turbines with a height of up to 117m without the need for a Superlift configuration. The required LH 114m + 12m LF configuration can be set up without the need for an assist crane.

The crane complies with European standard EN 13000 and US standard ASME B30.5.

For more information on companies in this article

Related Content

  • Advancing asphalt plant technology
    June 9, 2016
    Advances in asphalt plant technology were in major evidence at the bauma 2016 exhibition in Munich - Mike Woof writes One of the most apparent developments at bauma 2016 was the strong focus on asphalt plant technology. The massive physical presence of the asphalt plants could be seen from a distance, right across the showground, particularly the 50m-high machine Benninghoven had opted to exhibit. However, other plant systems from rival firms Ammann, Lintec and Marini, as well as Turkish company E-MAK, c
  • Major upgrade for Chicago O’Hare Airport
    August 14, 2015
    Internationally, airports are being upgraded and expanded to increase capacity and safety – Mike Woof writes. All around the world, airports are being expanded and upgraded, both to cope with massive increases in passenger numbers and also to handle larger aircraft. Runways have to be rebuilt with stronger structures and surfaces to handle greater air traffic volumes as well as increased loads from larger aeroplanes. Building airport runways, however, poses many challenges for construction crews. Paving qua
  • Advanced asphalt plants being developed
    April 7, 2017
    The Fayat Group is developing its asphalt plant range with its Marini-Ermont product offerings - Mike Woof writes The Fayat Group is a major player in the global asphalt plant sector with its Marini and Ermont brands and is further developing both product ranges. The latest machines have been designed to cater to a wide array of customer needs, from large, fixed high-production plants to its compact super portable units, as well as from high sophistication down to more basic technology for developing mar
  • Ageing Liberty Tunnels in US refurbished with hydrodemolition
    May 13, 2015
    Hydrodemolition surface preparation keeps Liberty Tunnel rehabilitation project on schedule in Pittsburgh. The Pennsylvania state Department of Transportation selected hydrodemolition surface preparation for the US$18.8 million rehabilitation of Pittsburgh’s Liberty Tunnels. Time was of the essence to complete the project on deadline without penalties and hydrodemolition was selected as it offered a fast and cost-effective method to prepare the tunnel walls for a new, shotcrete surface. This methods off