Skip to main content

Ruggedised networking solutions

The new COPave package from LafargeHolcim offers users the chance to evaluate the long-term environmental footprint of road construction. COPave is a life cycle assessment (LCA) software specific to roads, which allows designers, authorities, lenders and contractors to evaluate the environmental footprint of roads. Users can target the best carbon optimum for road investment as a result. CoPave is a collaborative integrated service that can be used for both new road projects and refurbishment works.
September 15, 2020 Read time: 2 mins
LafargeHolcim has developed a program that allows users to determine the long-term sustainability of road construction

The package offers the answer to a number of key questions for road contractors and clients alike. What is the environmental impact of rigid, semi-rigid or flexible structures? Does soil stabilisation reduce the environmental footprint of pavement and if so, by how much? How can engineers quantify the environmental impact of recycling in road construction? And how are innovative structures, materials and solutions performing from an environmental point of view? What about the impact of materials hauling distances?

According to LafargeHolcim, the responses to these questions are often biased and based on habits, preferences, or perceptions. However, the company’s researchers have developed COPave to provide an objective and exhaustive evaluation of road projects to assist decision-making.

The firm says that COPave allows an objective evaluation of roads, covering all stages of the projects, from the choice of raw materials to end of life considerations, including the use phase of the roads.

A number of parameters need to be considered when performing the life cycle assessment of a road project. These parameters range from the choice of raw materials and the pavement structural design, to the chosen maintenance scenario and its effect on the fuel efficiency of the vehicles during the project’s use phase.

The LCA results also depend on local climate conditions and traffic forecasts that change from project to project. That is why there is no universal answer as to what the best material or structure is, and why COPave is needed to fully understand the potential impact of often complex projects.

The environmental performance of any road project also depends on the local context. Several asphalt plants and aggregate quarries are available at different distances, leading to different production processes and offering different products.

These local conditions can result in a 30% change in the carbon emissions associated with the construction and maintenance operations of the project. COPave allows users to optimise the impacts of operations while also understanding how the choices made can affect the impact of the use and end-of-life phases of the road project. Understanding which life cycle stage offers the highest carbon emissions saving potential will be key in supporting the deployment of a sustainable road infrastructure.

For more information on companies in this article

Related Content

  • ERIC2016 the driver to European prosperity
    June 22, 2016
    From 18-20 October 2016, the European Union Road Federation (ERF), in partnership with the Road Safety markings Association (RSMA) will present the 1st European Road Infrastructure Congress (ERIC2016) in the Royal Armouries Museum in Leeds. Spanning three days, ERIC will bring together policymakers, road authorities, academics, research laboratories and industry representatives from across Europe and other countries to exchange good practices and present new research findings. The focus is on how to imp
  • Geosynthetics give extra strength to soil reinforcement
    March 14, 2012
    Using geosynthetics for soil reinforcement is highly effective but requires a high quality and trusted geogrid. When it comes to deciding which geogrid is best for a specific project, a number of product parameters must be taken into account. In the design of steep slopes, the most important parameter is the available long term design strength (Pdes). Recently, Colbond has significantly increased this factor for its high performance Enkagrid product, recognised with a newly updated BBA (British Board of Ag
  • Geosynthetics give extra strength to soil reinforcement
    May 3, 2012
    Using geosynthetics for soil reinforcement is highly effective but requires a high quality and trusted geogrid. When it comes to deciding which geogrid is best for a specific project, a number of product parameters must be taken into account. In the design of steep slopes, the most important parameter is the available long term design strength (Pdes). Recently, Colbond has significantly increased this factor for its high performance Enkagrid product, recognised with a newly updated BBA (British Board of Ag
  • New soil compactor launches from key manufacturers
    May 30, 2013
    Major manufacturers continue to develop new soil compactor models - Mike Woof reports. Innovations in machine design are being seen in the soil compaction sector from a number of major firms. As in other equipment sectors, new engine emissions legislation has played a huge role in driving the latest design changes. Europe, the US and Japan are rolling in the new Tier 4 Final/Stage IV legislation on noise and exhaust emissions which will be phased in across power output classes from the start of January 2014