Skip to main content

Reduced-temperature asphalt

Asphalt plant maker Benninghoven is preparing itself for a future trend, with an industry moving towards the greater use of reduced-temperature asphalt. This type of mix offers a substantial energy reduction, lowering costs.
October 13, 2022 Read time: 2 mins
Reduced-temperature asphalt can help the construction industry meet sustainability targets

The production of reduced-temperature asphalt, which is also known as low-temperature asphalt, warm asphalt or warm mix, is nothing new. The process was already tested back in the 1990s. But now that road construction authorities are also focusing on issues such as CO2 balance, protecting resources and reducing the energy input, reduced-temperature asphalt has once again come to the fore.

According to Benninghoven, asphalt mixing plants from the firm are in use all over the world and are providing customers with high-quality mix and cost-effective operation as well as low emissions, and meeting stringent health and safety requirements.

Reduced-temperature asphalt is a mixture produced at temperatures between 110°C and 130°C. By comparison, hot asphalt is typically produced between 140°C and 180°C, usually with bitumen at 160°C as a binder. One advantage of the reduced-temperature mixtures is that they can be conveniently produced and processed in the conventional manner.

The bitumen requires a temperature of at least around 140°C to achieve good wetting and coating of the aggregates in the mixer. Below this temperature, it remains too viscous. To lower the temperature during asphalt production, the bitumen viscosity has to be reduced temporarily. This is achieved by adding water (foam bitumen) or additives. When the hot bitumen is mixed with water, the bitumen foams and the volume increases many times over. The increased surface area enables better wetting of the aggregates in the mixer. This means that the mineral is coated effectively even at a lower temperature.

According to the German Asphalt Association, a temperature reduction of just 30°C results in a saving of 0.9litre of heating oil (or a fuel equivalent)/tonne of finished asphalt.

For a plant delivering a daily production of 2,000tonnes of mixture, this corresponds to a saving of 1,800litres of oil or up to three quarters of the annual heating energy consumption of a home. The reduction in CO2 emissions is 6,000kg/day.

Given the current focus on reducing CO2 emissions, this switch to low temperature asphalt could help the construction sector meet its targets on sustainability and help address climate change.

For more information on companies in this article

Related Content

  • Skanska and Kraton boost RAP use with called SYLVAROAD™ RP1000
    November 23, 2017
    The city of Västerås in central Sweden is known as a centre for industrial automation and information technology. Innovation abounds here and with it comes strong environmental efforts – meeting carbon reduction goals and maximising the recycling process, for example. A road construction project just outside this picturesque city highlights such innovation.
  • Runway rebuild for key Bulgarian airport
    August 21, 2013
    Varna Airport in north-east Bulgaria provides an important international link for the country, with a runway rebuild helping improve capacity. The airport is of particular importance for Bulgaria’s tourist trade as it provides a major connection for visitors to the Black Sea coast. And the reconstruction work at Varna Airport’s only runway will ensure the facility is able to handle the area’s increasing visitor numbers. The project had to be carried out quickly and efficiently to prevent delays to f
  • Review of the research activities on the behaviour of Iterlene
    November 2, 2012
    The use of reclaimed asphalt pavement (RAP) is common practice in many countries. The aged bitumen from RAP has a lower penetration and is more viscous than it was when first mixed. The reclaimed bitumen is generally balanced by the addition of fresh binder softer than the traditional one used to produce hot mixes. However, balancing penetration and softening point or viscosity does not produce an identical bitumen to the original one. One fundamental option is the regeneration of the aged binder in order t
  • Ammann’s green approach to construction
    June 18, 2025
    New technologies from Ammann will deliver green solutions for construction.