Skip to main content

Reduced-temperature asphalt

Asphalt plant maker Benninghoven is preparing itself for a future trend, with an industry moving towards the greater use of reduced-temperature asphalt. This type of mix offers a substantial energy reduction, lowering costs.
October 13, 2022 Read time: 2 mins
Reduced-temperature asphalt can help the construction industry meet sustainability targets

The production of reduced-temperature asphalt, which is also known as low-temperature asphalt, warm asphalt or warm mix, is nothing new. The process was already tested back in the 1990s. But now that road construction authorities are also focusing on issues such as CO2 balance, protecting resources and reducing the energy input, reduced-temperature asphalt has once again come to the fore.

According to Benninghoven, asphalt mixing plants from the firm are in use all over the world and are providing customers with high-quality mix and cost-effective operation as well as low emissions, and meeting stringent health and safety requirements.

Reduced-temperature asphalt is a mixture produced at temperatures between 110°C and 130°C. By comparison, hot asphalt is typically produced between 140°C and 180°C, usually with bitumen at 160°C as a binder. One advantage of the reduced-temperature mixtures is that they can be conveniently produced and processed in the conventional manner.

The bitumen requires a temperature of at least around 140°C to achieve good wetting and coating of the aggregates in the mixer. Below this temperature, it remains too viscous. To lower the temperature during asphalt production, the bitumen viscosity has to be reduced temporarily. This is achieved by adding water (foam bitumen) or additives. When the hot bitumen is mixed with water, the bitumen foams and the volume increases many times over. The increased surface area enables better wetting of the aggregates in the mixer. This means that the mineral is coated effectively even at a lower temperature.

According to the German Asphalt Association, a temperature reduction of just 30°C results in a saving of 0.9litre of heating oil (or a fuel equivalent)/tonne of finished asphalt.

For a plant delivering a daily production of 2,000tonnes of mixture, this corresponds to a saving of 1,800litres of oil or up to three quarters of the annual heating energy consumption of a home. The reduction in CO2 emissions is 6,000kg/day.

Given the current focus on reducing CO2 emissions, this switch to low temperature asphalt could help the construction sector meet its targets on sustainability and help address climate change.

For more information on companies in this article

Related Content

  • Recycling advances from Wirtgen
    June 18, 2012
    German firm Wirtgen is retaining its lead in road recycling technologies – Mike Woof writes Tests on cold recycling with a new layer thickness using Wirtgen's sophisticated WR 4200 machine have shown impressive results according to the firm. The road construction and traffic authority Landesbetrieb Mobilität (LBM) Cochem-Koblenz commissioned a pilot project as part of its plan to optimise the cold in-place recycling process (CIR). The aim was to examine the extent to which the layer thickness can be reduced
  • Increased use of RAP in asphalt production
    December 8, 2015
    In the US asphalt pavement mix producers are improving the sustainability pro_ le of roads through the incorporation of recycled materials and the use of energy-saving warm-mix asphalt technologies. According to the latest survey of asphalt mix producers conducted by the National Asphalt Pavement Association (NAPA) in partnership with the Federal Highway Administration (FHWA), more than 67.65 million tonnes of recycled materials was put to use in new asphalt pavement mixtures during the 2014 construction
  • Energy Saving Roads - The Future Way of Sustainable Infrastructure
    April 23, 2019
    A workshop into environmentally-friendly road construction was held in Denmark - report from Mikkel Bruun, Bruun Communication Recent advances in road construction have included the development of climate asphalt, which reduces rolling resistance and saves CO2. But what is it and how does it affect the production and use of asphalt pavements? And what are the socio-economic implications? The ROSE project that just ended with a workshop in Copenhagen might hold the answers. The rule of thumb is that lo
  • Bitumen technology: three ways to more sustainable roads
    May 14, 2020
    This issue we look at three case studies showcasing new technologies designed to deliver more sustainable paving solutions.