Skip to main content

Reduced-temperature asphalt

Asphalt plant maker Benninghoven is preparing itself for a future trend, with an industry moving towards the greater use of reduced-temperature asphalt. This type of mix offers a substantial energy reduction, lowering costs.
October 13, 2022 Read time: 2 mins
Reduced-temperature asphalt can help the construction industry meet sustainability targets

The production of reduced-temperature asphalt, which is also known as low-temperature asphalt, warm asphalt or warm mix, is nothing new. The process was already tested back in the 1990s. But now that road construction authorities are also focusing on issues such as CO2 balance, protecting resources and reducing the energy input, reduced-temperature asphalt has once again come to the fore.

According to Benninghoven, asphalt mixing plants from the firm are in use all over the world and are providing customers with high-quality mix and cost-effective operation as well as low emissions, and meeting stringent health and safety requirements.

Reduced-temperature asphalt is a mixture produced at temperatures between 110°C and 130°C. By comparison, hot asphalt is typically produced between 140°C and 180°C, usually with bitumen at 160°C as a binder. One advantage of the reduced-temperature mixtures is that they can be conveniently produced and processed in the conventional manner.

The bitumen requires a temperature of at least around 140°C to achieve good wetting and coating of the aggregates in the mixer. Below this temperature, it remains too viscous. To lower the temperature during asphalt production, the bitumen viscosity has to be reduced temporarily. This is achieved by adding water (foam bitumen) or additives. When the hot bitumen is mixed with water, the bitumen foams and the volume increases many times over. The increased surface area enables better wetting of the aggregates in the mixer. This means that the mineral is coated effectively even at a lower temperature.

According to the German Asphalt Association, a temperature reduction of just 30°C results in a saving of 0.9litre of heating oil (or a fuel equivalent)/tonne of finished asphalt.

For a plant delivering a daily production of 2,000tonnes of mixture, this corresponds to a saving of 1,800litres of oil or up to three quarters of the annual heating energy consumption of a home. The reduction in CO2 emissions is 6,000kg/day.

Given the current focus on reducing CO2 emissions, this switch to low temperature asphalt could help the construction sector meet its targets on sustainability and help address climate change.

For more information on companies in this article

Related Content

  • Sripath leads the charge on sustainability
    June 12, 2024
    Sustainability may be the paving industry’s current buzzword, but key elements of sustainability have been ingrained in the Sripath ethos since the company’s inception.
  • Eurovia delivers Tempera to UK county
    December 2, 2020
    Eurovia is delivering high volumes of its low-temperature asphalt binder course Tempera in the UK county of Essex.
  • Evonik’s VESTENAMER, part of the rubber road revolution
    February 21, 2019
    Rubber modified bitumen is gaining ground, according to speciality chemicals business Evonik The intensified search for better road durability and lower traffic noise - both environmental concerns - has meant an increasing market for rubber-modified bitumen. At the same time, raw material costs for asphalt and specifically for asphalt modification compounds have increased considerably, creating another obstacle to cost-effective road construction. The stakes are high for getting roads more durable
  • Without political intervention, new technologies for using waste rubber in roads will not take off
    November 14, 2017
    New technologies to make rubber modification of asphalt are under development and testing. But political will is the real key to diverting old tyres from landfill - Kristina Smith reports. A new way to introduce end-of-life tyre rubber into asphalt mixes could be the key to diverting more tyres away from landfill, according to Dr Davide Lo Presti, principal research fellow at the Nottingham Transportation Engineering Centre (NTEC) at the University of Nottingham.