Skip to main content

Reduced-temperature asphalt

Asphalt plant maker Benninghoven is preparing itself for a future trend, with an industry moving towards the greater use of reduced-temperature asphalt. This type of mix offers a substantial energy reduction, lowering costs.
October 13, 2022 Read time: 2 mins
Reduced-temperature asphalt can help the construction industry meet sustainability targets

The production of reduced-temperature asphalt, which is also known as low-temperature asphalt, warm asphalt or warm mix, is nothing new. The process was already tested back in the 1990s. But now that road construction authorities are also focusing on issues such as CO2 balance, protecting resources and reducing the energy input, reduced-temperature asphalt has once again come to the fore.

According to Benninghoven, asphalt mixing plants from the firm are in use all over the world and are providing customers with high-quality mix and cost-effective operation as well as low emissions, and meeting stringent health and safety requirements.

Reduced-temperature asphalt is a mixture produced at temperatures between 110°C and 130°C. By comparison, hot asphalt is typically produced between 140°C and 180°C, usually with bitumen at 160°C as a binder. One advantage of the reduced-temperature mixtures is that they can be conveniently produced and processed in the conventional manner.

The bitumen requires a temperature of at least around 140°C to achieve good wetting and coating of the aggregates in the mixer. Below this temperature, it remains too viscous. To lower the temperature during asphalt production, the bitumen viscosity has to be reduced temporarily. This is achieved by adding water (foam bitumen) or additives. When the hot bitumen is mixed with water, the bitumen foams and the volume increases many times over. The increased surface area enables better wetting of the aggregates in the mixer. This means that the mineral is coated effectively even at a lower temperature.

According to the German Asphalt Association, a temperature reduction of just 30°C results in a saving of 0.9litre of heating oil (or a fuel equivalent)/tonne of finished asphalt.

For a plant delivering a daily production of 2,000tonnes of mixture, this corresponds to a saving of 1,800litres of oil or up to three quarters of the annual heating energy consumption of a home. The reduction in CO2 emissions is 6,000kg/day.

Given the current focus on reducing CO2 emissions, this switch to low temperature asphalt could help the construction sector meet its targets on sustainability and help address climate change.

For more information on companies in this article

Related Content

  • Asphalt plant technology meets market needs
    February 16, 2012
    Plants for mixing asphalt are becoming more sophisticated than ever, while users are looking for ecological and technological benefits. Patrick Smith reports. When the Adige Bitumi Group decided to renew its old M 260 plant it chose to collaborate with Marini for the design and development of a plant with production of 280-300tonnes/hour.
  • Advanced asphalt plant innovations
    November 30, 2022
    Key advances are being seen in the asphalt plant market, with leading manufacturers developing new systems to produce materials more efficiently and with lower emissions, while using more recycled asphalt pavement (RAP) and also offering greater mobility
  • Asphalt plants: alternative fuels on the horizon
    November 22, 2022
    Many asphalt plant manufacturers such as Ammann, Benninghoven and Fayat have already developed contingencies for alternative fuels.
  • Bitumen additives raise environmental questions
    February 14, 2012
    New products, including additives, are coming onto the market to help reduce the cost of producing bitumen. Patrick smith reports. According to Eng. Paolo Visconti of Iterchimica, environmental issues and the health and safety of operators of manufacturing plants and workers laying bituminous mixes have raised long debates on the possible harmfulness of fumes which are emitted when heating these mixes at the temperatures (160-180°C) required for their production. "If, on the one hand, the effects on operato