Skip to main content

Project AME: the world’s first 3D-printed excavator

The world’s first 3D-printed excavator was unveiled in the new Tech Experience zone of CONEXPO-CON/AGG. Project AME (Additive Manufactured Excavator), led by Oak Ridge National Laboratory (ORNL) and involving multiple partners from industry, trade associations and academia, was instigated back in 2014 when visiting members of the Center for Compact and Efficient Fluid Power (CCEFP) saw ORNL’s 3D-printed car.
March 7, 2017 Read time: 3 mins
Glimpse of the future: the 3D printed excavator

The world’s first 3D-printed excavator was unveiled in the new Tech Experience zone of CONEXPO-CON/AGG.

Project AME (Additive Manufactured Excavator), led by 8584 Oak Ridge National Laboratory (ORNL) and involving multiple partners from industry, trade associations and academia, was instigated back in 2014 when visiting members of the Center for Compact and Efficient Fluid Power (CCEFP) saw ORNL’s 3D-printed car.

Project AME (pronounced ‘Amy’) has led to advances in 3D manufacturing processes: “What’s really revolutionary about this project is not the 3D printing of the excavator itself, it’s the development of the technology that allows us to grow big steel parts quickly,” explained Lonnie Love, project lead, and group leader for ORNL’s manufacturing systems research group.

Only certain parts of the mini excavator, which weighs around 6 tonnes (13,000 lb), were 3D printed: the boom, the cab and the heat exchanger.

Wolf Robotics developed the new process for printing the metal boom, achieving a higher accuracy than the team had anticipated: “You are melting metal and growing a big part, seven feet tall. We expected it would shrink,” said Love. “But the accuracy was to within one fifty-thousandth of an inch, an order of magnitude better than we expected.”

The cab was printed using carbon fibre-reinforced acrylonitrile butadiene styrene composites technology by Cincinnati Incorporated. Its organic structure came from students at University of Illinois at Urbana-Champaign who won a competition to design the cab. Concept Laser created the heat exchanger.

The difference between the printed parts and conventionally-manufactured parts is that there are fewer pieces. So the boom has hydraulic channels cast into it and the cab is all one piece, including the chair.

The next steps for 3D printing are to speed up the process. “We want to go bigger, faster and cheaper. It’s a scalable technology,” said Love. “At the moment we are printing at a speed of around 5 lb (3kg) per hour - the goal is to print at 100 lb (45kg) per hour.”

Though Love does see a future where machines will be created by 3D printing, a more immediate application is for the creation of moulds, vastly reducing the cost and time to produce. ORNL is already working with car manufacturers to make this a reality this year. In the longer term, once speed of production has increased, this technology could allow machines to be made quickly to order, with the cost of bespoke features vastly reduced.

The excavator is a collaboration between the 1100 Association of Equipment Manufacturers, National Fluid Power Association, Center for Compact and Efficient Fluid Power (CCEFP), ORNL, the National Science Foundation (NSF), Georgia Tech, University of Illinois, Urbana-Champaign and University of Minnesota (UMN). This project was supported by DOE’s Office of Energy Efficiency and Renewable Energy – Advanced Manufacturing Office.

For more information on companies in this article

Related Content

  • A virtual virtuous circle
    March 19, 2021
    Virtual sensors will allow a safer driving experience and reduce road maintenance costs. Tactile Mobility’s Eitan Grosbard talks to David Arminas
  • In control, with advanced technology
    August 15, 2019
    Machine control technology continues to advance, with new systems offering contractors major gains in working efficiency The latest developments in machine control technology once again push the bar in terms of advancements. The latest systems allow contractors to work even more effectively and efficiently than before. Doosan has unveiled one of the first uses globally of 5G technology to remotely control construction and quarrying machines. The firm has coined the term ‘TeleOperation’ to describe the
  • Key innovations in engines and drivelines technology at Conexpo 2014
    April 22, 2014
    Engines and drivelines technologies have move forward, as could be seen at Conexpo 2014 - Geoff Ascroft reports Solutions for Tier 4 Final emissions regulations dominated Conexpo 2014, with many firms showing off their options of DOC, DPF and SCR after-treatments. Deutz, while staying with an SCR-only solution, took a more unusual approach on its high horsepower V6 12litre and V8 16litre engines. Both get a dual SCR after treatment system to meet Tier 4 Final emission standards. Using a dual SCR system,
  • Gothenburg to collect road condition data
    July 2, 2021
    The Swedish municipality of Gothenburg is working with ViaPM, NIRA Dynamics and Luleå University of Technology to gather data on road friction during the next two winters.