Skip to main content

Project AME: the world’s first 3D-printed excavator

The world’s first 3D-printed excavator was unveiled in the new Tech Experience zone of CONEXPO-CON/AGG. Project AME (Additive Manufactured Excavator), led by Oak Ridge National Laboratory (ORNL) and involving multiple partners from industry, trade associations and academia, was instigated back in 2014 when visiting members of the Center for Compact and Efficient Fluid Power (CCEFP) saw ORNL’s 3D-printed car.
March 7, 2017 Read time: 3 mins
Glimpse of the future: the 3D printed excavator

The world’s first 3D-printed excavator was unveiled in the new Tech Experience zone of CONEXPO-CON/AGG.

Project AME (Additive Manufactured Excavator), led by 8584 Oak Ridge National Laboratory (ORNL) and involving multiple partners from industry, trade associations and academia, was instigated back in 2014 when visiting members of the Center for Compact and Efficient Fluid Power (CCEFP) saw ORNL’s 3D-printed car.

Project AME (pronounced ‘Amy’) has led to advances in 3D manufacturing processes: “What’s really revolutionary about this project is not the 3D printing of the excavator itself, it’s the development of the technology that allows us to grow big steel parts quickly,” explained Lonnie Love, project lead, and group leader for ORNL’s manufacturing systems research group.

Only certain parts of the mini excavator, which weighs around 6 tonnes (13,000 lb), were 3D printed: the boom, the cab and the heat exchanger.

Wolf Robotics developed the new process for printing the metal boom, achieving a higher accuracy than the team had anticipated: “You are melting metal and growing a big part, seven feet tall. We expected it would shrink,” said Love. “But the accuracy was to within one fifty-thousandth of an inch, an order of magnitude better than we expected.”

The cab was printed using carbon fibre-reinforced acrylonitrile butadiene styrene composites technology by Cincinnati Incorporated. Its organic structure came from students at University of Illinois at Urbana-Champaign who won a competition to design the cab. Concept Laser created the heat exchanger.

The difference between the printed parts and conventionally-manufactured parts is that there are fewer pieces. So the boom has hydraulic channels cast into it and the cab is all one piece, including the chair.

The next steps for 3D printing are to speed up the process. “We want to go bigger, faster and cheaper. It’s a scalable technology,” said Love. “At the moment we are printing at a speed of around 5 lb (3kg) per hour - the goal is to print at 100 lb (45kg) per hour.”

Though Love does see a future where machines will be created by 3D printing, a more immediate application is for the creation of moulds, vastly reducing the cost and time to produce. ORNL is already working with car manufacturers to make this a reality this year. In the longer term, once speed of production has increased, this technology could allow machines to be made quickly to order, with the cost of bespoke features vastly reduced.

The excavator is a collaboration between the 1100 Association of Equipment Manufacturers, National Fluid Power Association, Center for Compact and Efficient Fluid Power (CCEFP), ORNL, the National Science Foundation (NSF), Georgia Tech, University of Illinois, Urbana-Champaign and University of Minnesota (UMN). This project was supported by DOE’s Office of Energy Efficiency and Renewable Energy – Advanced Manufacturing Office.

For more information on companies in this article

Related Content

  • ARTBA video contest winners announced
    September 11, 2023
    Students from the US states of Pennsylvania and Georgia have earned top honours in the annual ARTBA Student Transportation Video Contest.
  • Electric dreams
    January 21, 2014
    A team of engineering and science students in the Eindhoven University of Technology in Holland have constructed the world’s first solar powered family car. This four-seater is claimed to be able to travel nearly 600km on a sunny day while carrying four people.
  • Shell’s John Read explains “adaptable bitumen” developments
    December 15, 2016
    Shell’s highly innovative bitumen and asphalt solutions are helping create future-ready urban road networks around the world to meet the needs of today and tomorrow. Shell’s general manager of bitumen technology, Professor John Read, takes a look at some of the company’s game-changing ideas. The next 30 or so years will see a significant transformation in the way we live. Whereas almost 75% of the world’s population lived in rural locations in 1950, around 75% will live in cities by 2050. The global popu
  • Topcon: A revolution in construction technology’s coming
    July 7, 2021
    The construction equipment industry is at a turning point. Topcon’s senior leaders believe that we are about to see a huge surge in the adoption of new construction technologies. The time is ripe as a new, younger and more tech-savvy generation comes to the fore. Governments could save billions, and where does the smartphone fit in?