Skip to main content

Electro-fragmentation offers new recycling solution for fibre-reinforced concrete

A pan-European research project is investigating the use of electro-fragmentation to help recycle fibre-reinforced concrete (FRC). Increasingly used in civil applications such as tunnels and bridge decks, FRC can be challenging to recycle because of the difficulty in separating the tiny fibres from the concrete material. “Most of the research into FRC is about the formulation or the application of the material,” Kathy Bru, a process engineer at research organisation BRGM told a forum at the World of Concre
April 24, 2018 Read time: 2 mins
Steel fibres like these from Romfracht are used in fibre reinforced concrete
A pan-European research project is investigating the use of electro-fragmentation to help recycle fibre-reinforced concrete (FRC). Increasingly used in civil applications such as tunnels and bridge decks, FRC can be challenging to recycle because of the difficulty in separating the tiny fibres from the concrete material.


“Most of the research into FRC is about the formulation or the application of the material,” Kathy Bru, a process engineer at research organisation 8761 BRGM told a forum at the World of Concrete this week. “We are looking ahead 20 or 30 years to the end-of-life so that we can recycle and re-use again.”

The project is part of a bigger European research programme called HISER (www.hiserproject.eu), led by Spanish company Tecnalia, which aims to find better ways to cope with the 461 million tonnes of construction and demolition waste, excluding excavated material, which is produced every year in the European Union. As well as looking for novel recycling techniques that improve the value of waste materials, some of the 25 partners are looking at how specification can be changed to include more recycled materials in new construction projects.

Electro-fragmentation is a process that applies a high-voltage electrical charge into the material. It creates a shock, somewhat like a lightning strike or a demolition blast, concentrated at the interface between the different materials, which separates them out. The process was developed for mineral processing and is a new way of dealing with waste.

To date, the project has tested a small sample in the laboratories of Lafarge. The results looked promising, with the possibility of reusing both the fibres and the concrete elements. Now researchers are working on FRC that has come from the demolition of an experimental FRC bridge.

The next steps will be to evaluate the cost, in terms of cash and carbon, says Bru: “It’s also very important to consider the economic and environmental impact of new technology to ensure that what we think are good ideas are also good from an economic and environmental perspective.”

For more information on companies in this article

Related Content

  • Pavement recycling using cement
    July 12, 2012
    Carlos Jofré, technical director of the Spanish Institute of Cement and its Applications (IECA), introduces, on behalf of EUPAVE*, a sustainable technique to rehabilitate fatigued pavements Recycling of pavements is a technique whereby an existing degraded pavement is modified and transformed into a homogeneous structure that can support the traffic requirements. More specifically, it involves reusing the materials from the existing pavement for the construction of a new layer, including the pulverisation o
  • Road sector drives Europe’s construction recovery
    September 13, 2017
    Despite political concerns and upheavals, Europe’s construction market is on the up, reports Graham Anderson Europe’s road building market is forecast to grow strongly in real terms up to 2019, as a strengthening economy boosts construction, creating investment and jobs. The market is predicted to grow by 16% between 2016 and 2019 and is being led by increases in the UK (39%), Norway (38%) and Poland (35%). In the UK, the market is buoyed by a number of major projects coming on stream, such as England’
  • Rapid replacement of multiple bridges – the plan
    December 14, 2017
    The US State of Pennsylvania is saving itself $220 million over 10 years on a programme to replace 558 bridges with an unusual public private partnership approach - Kristina Smith writes It is called the Rapid Bridge Replacement Programme with good reason. Pennsylvania’s Department of Transport, PennDOT, wants to see no less than 558 structurally deficient bridges replaced with newly designed and constructed ones, all within four years. Using traditional forms of procurement this programme would be like
  • Epoxy resins for resilient roads in Ethiopia
    April 4, 2022
    Using epoxy bitumen in chip seals could significantly increase the life of high-volume roads in low-income countries and make them more resilient to climate change impacts. The technology, which has been developed and used in New Zealand, will be trialled in Ethiopia this year.