Skip to main content

TNO tests cooperative adaptive cruise control vehicles

The Netherlands Organisation for Applied Scientific Research, TNO, is in the process of developing a low cost cooperative adaptive cruise control (CACC) technology. This is being demonstrated in a test fleet of Toyota Prius cars in which factory-fitted long-range radar is used together with wireless vehicle to vehicle communications (802.11p and ETSI Geonet) and GPS based location, to enable CACC.
March 19, 2012 Read time: 2 mins
RSSThe Netherlands Organisation for Applied Scientific Research, 1427 TNO Defence, is in the process of developing a low cost cooperative adaptive cruise control (CACC) technology. This is being demonstrated in a test fleet of 2728 Toyota Prius cars in which factory-fitted long-range radar is used together with wireless vehicle to vehicle communications (802.11p and ETSI Geonet) and GPS based location, to enable CACC. Control of each of the vehicles is achieved through interaction with the CAN bus in order to manage acceleration and deceleration directly through the hybrid powertrain’s own control system.

The CACC control strategy aims to optimise the collective behaviour of participating vehicles in order to safely allow significant reductions in inter-vehicle spacing while providing a comfortable experience for drivers. This includes, for example, the avoidance of oscillations of the ad-hoc platoon and the management of issues of signal degradation and of merging in and out at junctions.

In order to test and demonstrate this advanced system and consider the potential for its further development, three of TNO’s Prius vehicles equipped with CACC were evaluated at 3182 innovITS Advance, the UK research and development centre for telecommunications, automotive and electronics industries.

“CACC allows for very small headway times and hence has the potential to reduce fuel consumption and emissions as well as improving road space utilisation,” said Jeroen Ploeg, TNO project manager Automotive/CACC. “TNO has made some very significant advances in this new field of technology and we were pleased to be able to test and demonstrate some of our CACC research vehicles at InnovITS Advance. This facility’s network of urban roads with fully controllable communications infrastructure makes it a very attractive location for the testing and development of new cooperative vehicle technologies such as CACC.”

For more information on companies in this article

Related Content

  • The challenge of integrating new mobility, a study
    February 6, 2020
    An ongoing study is benchmarking progress towards adapting roads to new mobility, explains Christophe Nicodème*
  • Market for PHEV and PEV vehicles to 2017 assessed
    April 25, 2012
    According to a report from Pike Research, hybrid electric vehicles (HEVs) and plug-in electric vehicles (PEVs) combined will represent 3.1 per cent of worldwide auto sales by 2017. Thanks to predicted higher penetration rates in the United States, Pike believes HEVs and PEVs will account for 5.1 per cent of total US vehicle sales in 2017.
  • Construction adapting with Machine control Technologies
    June 18, 2015
    Machine control technologies are revolutionising construction – Dan Gilkes writes Electronic control of engines, transmissions and hydraulic systems, primarily to reduce exhaust emissions and boost productivity, is also providing manufacturers with an opportunity to incorporate increasingly complex machine control into their equipment. This in turn has the potential to make the machinery more productive, further cutting fuel consumption as part of a virtuous operational circle.
  • New methods allow concrete testing on the spot
    July 20, 2015
    This month we look at two new methods which are allowing concrete to be tested on the spot, and [over the page] we catch up on the latest news from concrete testing equipment suppliers - Kristina Smith writes Sometimes test results can be very bad news. If the concrete pavement or bridge abutment has already been poured, and if the concrete does not meet the specification, the outcome could be very expensive remedial work.