Skip to main content

Student’s graphene battery could cut EV charging times

Josh de Wit, a second-year mechanical engineering student from the University of Sussex, has won the Autocar-Courland Next Generation Award for 2016 with a concept that could dramatically reduce charging times for electric vehicles (EVs) and reduce the weight of their batteries. Josh’s design harnesses the remarkable qualities of graphene, a form of pure carbon in sheets that are just one atom thick. A car battery made with stacked graphene, he says, would take far less time to charge, store more energy
December 8, 2016 Read time: 2 mins
Josh de Wit, a second-year mechanical engineering student from the University of Sussex, has won the Autocar-Courland Next Generation Award for 2016 with a concept that could dramatically reduce charging times for electric vehicles (EVs) and reduce the weight of their batteries.

Josh’s design harnesses the remarkable qualities of graphene, a form of pure carbon in sheets that are just one atom thick. A car battery made with stacked graphene, he says, would take far less time to charge, store more energy and be cheaper, stronger and lighter than existing products. This is because graphene is highly conductive, light and strong and far less would be needed.

Josh, who studies in the University’s School of Engineering and Informatics, is currently on placement with electric-motor company YASA. In the spring, he will begin a six-month work experience tour of some of the major automakers, including Honda, 8001 Jaguar Land Rover, McLaren, 2454 Nissan, 3504 Peugeot and 2728 Toyota.

He is also working with the University’s business incubator, Sussex Innovation, to develop a prototype and bring his stacked-graphene battery concept to market.

For more information on companies in this article

Related Content

  • Road repairs take to the air
    November 29, 2018
    Automated road repairs using 3D printing could save money and reduce disruption, reports Kristina Smith It’s the middle of the night and in the street below a team is busy carrying out repairs to the road surface. But there isn’t a human in sight. A road-repair drone has landed at the site of a crack and a 3D asphalt printer is now busy filling in that crack. A group of traffic cone drones have positioned themselves around the repair location to protect the repair drone and divert traffic around it.
  • Methanol range extender for fuel cell vehicle
    July 9, 2012
    The innovative QBREAK electric car is to benefit from a sophisticated methanol fuel cell range extender. Development work is being carried out on the project by a consortium of Danish companies. The plan is to develop a novel, range-extended electric vehicle that uses biomethanol as a fuel source. TheModularEnergyCarrier concept (MECc) project has just been granted funding from the Danish government. The reworked electric car is expected to deliver high market potential due to a competitive price and specif
  • Responsive roadsign developed by student
    August 22, 2013
    A UK student hopes his new lenticular road signs which ‘pulse’ at drivers will lead to a revolution in the way motorists are given information on the roads. Meanwhile, a leading road marking firm is helping keep tourists safe in a spiritually significant town in Umbria, Italy. Guy Woodford reports You may think Charles Gale’s vision of creating the first ‘pulsing’ lenticular road sign was the result of months, even years, spent studying traffic and driver behaviour on the roads of his adopted student c
  • The Fayat Group is seeing strong turnover in these strange times
    November 14, 2022
    Fayat Group president Jean-Claude Fayat discussed the firm’s business developments with Mike Woof