Skip to main content

Spanish researchers develop new infrared emissions monitoring program that does not disrupt traffic flows

Spanish researchers believe they have found a new way of measuring road-side air quality with an infrared camera system that can remotely measure vehicle emissions by scanning the unique infrared signatures of various pollutants such as carbon dioxide, carbon monoxide, nitrogen oxide, and so on.
September 27, 2013 Read time: 2 mins
Spanish researchers believe they have found a new way of measuring road-side air quality with an infrared camera system that can remotely measure vehicle emissions by scanning the unique infrared signatures of various pollutants such as carbon dioxide, carbon monoxide, nitrogen oxide, and so on.

A fixed-point camera measures and then feeds the gas concentrations it has recorded into a sophisticated software program using a high-speed rotating wheel of lens filters to enable each unit to measure the quantity of emissions from the exhaust pipe of each passing vehicle, even if it is travelling at motorway speeds. The system produces a chemical fingerprint for each passing vehicle and builds up an emissions profile for the section of highway being monitored.

In a test case this summer, researchers from the Remote Sensing and Infrared Image Laboratory at the Universidad Carlos III in Madrid monitored and analysed the A6 motorway leading into Madrid. And, according to researcher Victor Gil Gonzalez, the team was quickly able “to quantify gas emissions and see which cars sending the most pollution into the air." The camera system also analyzed ratios, like the proportion of carbon monoxide to carbon dioxide, which in a properly functioning engine should remain low even during periods of heavy fuel consumption.

The project is not the first to use remote sensing to evaluate emission levels at the road-side, but it claims to be the first to be able to pinpoint the most environmentally damaging vehicles without reducing the capacity or flow rate of the road being measured. The clever thing about the new Spanish system is that it can provide real-time emissions data for a four-lane highway without disrupting traffic patterns, say the researchers.

Related Content

  • Cosmic rays to monitor bridge condition
    January 2, 2025
    Cosmic rays can be used to monitor bridge condition.
  • Transport impact of concern in Europe
    April 26, 2012
    The latest research shows that emissions of many pollutants from transport fell in 2009. But this reduction may only be a temporary effect of the economic downturn, according to the latest annual report on transport emissions from the European Environment Agency (EEA). The Transport and Environment Reporting Mechanism (TERM) reveals the environmental impact of transport. For the first time, the report considers a comprehensive set of quantitative targets proposed by the European Commission’s 2011 roadmap on
  • Mega city transport in Mexico
    June 13, 2012
    Rapid urban growth is resulting in massive mega cities with major transport needs and Mexico City is one of the world’s largest – Mike Woof reports Mexico City is a vast, sprawling metropolis and one of the world’s largest cities, resulting in huge problems for its inhabitants, particularly with regard to infrastructure. Measuring population size is an inexact science for large cities as suburban areas can add to the figures considerably, especially in developing nations where unplanned expansion is as comm
  • UK trialling hazard warning technology
    November 26, 2024
    Results from a project by the UK’s department of transport and AECOM – using Heads-Up technology from Acusensus, has underlined scale of distracted driving and lack of seatbelt use.