Skip to main content

Spanish researchers develop new infrared emissions monitoring program that does not disrupt traffic flows

Spanish researchers believe they have found a new way of measuring road-side air quality with an infrared camera system that can remotely measure vehicle emissions by scanning the unique infrared signatures of various pollutants such as carbon dioxide, carbon monoxide, nitrogen oxide, and so on.
September 27, 2013 Read time: 2 mins
Spanish researchers believe they have found a new way of measuring road-side air quality with an infrared camera system that can remotely measure vehicle emissions by scanning the unique infrared signatures of various pollutants such as carbon dioxide, carbon monoxide, nitrogen oxide, and so on.

A fixed-point camera measures and then feeds the gas concentrations it has recorded into a sophisticated software program using a high-speed rotating wheel of lens filters to enable each unit to measure the quantity of emissions from the exhaust pipe of each passing vehicle, even if it is travelling at motorway speeds. The system produces a chemical fingerprint for each passing vehicle and builds up an emissions profile for the section of highway being monitored.

In a test case this summer, researchers from the Remote Sensing and Infrared Image Laboratory at the Universidad Carlos III in Madrid monitored and analysed the A6 motorway leading into Madrid. And, according to researcher Victor Gil Gonzalez, the team was quickly able “to quantify gas emissions and see which cars sending the most pollution into the air." The camera system also analyzed ratios, like the proportion of carbon monoxide to carbon dioxide, which in a properly functioning engine should remain low even during periods of heavy fuel consumption.

The project is not the first to use remote sensing to evaluate emission levels at the road-side, but it claims to be the first to be able to pinpoint the most environmentally damaging vehicles without reducing the capacity or flow rate of the road being measured. The clever thing about the new Spanish system is that it can provide real-time emissions data for a four-lane highway without disrupting traffic patterns, say the researchers.

Related Content

  • Weighty matters for developing countries
    November 6, 2012
    One leading Weigh in Motion technology manufacturer is helping governments in developing countries reduce excessive road damage, while several others have seen their latest WIM systems recently used on the highways of Eastern Europe. Guy Woodford reports Recent Central Weighing WIM installations in Bangladesh are helping its national government reduce the financial burden of excessive road damage, while also protecting many bridges that are vital to transport and trade. The need for such installations was e
  • Highways England appoints ghost busters for M5 motorway
    November 29, 2019
    After major testing in Madrid, Highways England is trialling products from five companies with a view to ridding the industry of so-called ghost road markings.
  • Number plate recognition tools
    February 28, 2012
    CitySync is offering an array of new tools for the traffic sector. The JellyBean is a mobile automatic number plate recognition (ANPR) camera aimed at use by enforcement agencies and is designed specifically to be mounted on police vehicles. This advanced dual ANPR camera incorporates mono and colour overview cameras, uses sophisticated infra-red LED technology and features a compact and durable casing.
  • Software mapping takes on hard-to-tackle air pollution problems
    June 15, 2018
    Software mapping of air pollution along transport corridors is an important weapon for improving air quality, argues Arne Berndt*. Although power plants and factories play a large part in increasing air pollution globally, traffic is now the largest single contributor. Commercial vehicles account for a significant share of traffic around the world, with freight volumes projected to grow 40% by 2050. Yet, despite modern vehicles being more environmentally friendly than earlier models, the sheer volume of th