Skip to main content

News page test

Victoria Banks and Neville Stanton [1] of Southampton University’s Transportation Research Group examine the real impact of creeping driver automation.
September 23, 2014 Read time: 2 mins
Kofi Annan, former secretary-general of the United Nations
Victoria Banks and Neville Stanton [1] of Southampton University’s Transportation Research Group examine the real impact of creeping driver automation.

Safety research suggests that 90% of accidents are thought to be a result of driver inattentiveness to unpredictable or incomplete information and the vision is that highly automated vehicles will lead to accident-free driving in the future. This means that 100% of the active driving task will need to be completed by a combination of advanced driver assistance systems (ADAS) with the driver becoming a passive monitor of system operation. The European New Car Assessment Program (1199 NCAP) continues to drive vehicle manufacturers to meet minimal safety requirements. It ensures stringent guidelines and testing protocols are rigorously enforced in order that drivers and new car buyers are given transparent safety information through the NCAP Star Rating scheme.

These formal testing procedures focus on the technical aspects of current ADAS which go some way in automating elements of the driving task. Yet there is growing concern within the ergonomics and human factors community that vehicle automation may actually increase pressure on drivers to monitor both the environment and the behaviour of vehicle subsystems. If this is the case the implementation of such systems could contribute to safety concerns rather than overcome them. Failing to acknowledge the role of the driver in an automated vehicle system may lead to undesirable behavioural adaptation such as changes to driver performance, as a result of inadequately controlling for the changing role of the driver within the control-feedback loops.


For more information on companies in this article

Related Content

  • VIDEO: Huesker explains “Interaction flexibility”
    August 4, 2017
    Huesker, an earthworks and foundation designer for roads and pavements, has posted a short video explaining “interaction flexibility”, a new term for geogrid-reinforced structures. Interaction flexibility is an important technical term, as important as tensile strength and tensile stiffness, to secure the quality of a geogrid reinforced construction, explains the engineering team at Huesker which has its head office in Gescher, Germany.
  • The Lessons of the Genoa bridge collapse
    April 23, 2019
    The partial collapse of the Polcevera viaduct, better known as the Morandi Bridge, has prompted debate regarding the technical and administrative aspects of maintaining road infrastructures. We discussed it with the engineer Gabriele Camomilla, former Director of Research and Maintenance of the Società Autostrade, who coordinated the only major structural intervention performed on the bridge, carried out in the early 1990s
  • Motorcycle type approval deal for Europe
    November 29, 2012
    The Members of the European Parliament have now approved the regulation on the approval of two- and three wheelers. This included a number of amendments which have been welcomed by motorcyclists as a compromise. The regulation is setting new rules and technical requirements for manufacturers who sell motorcycles in the European Union. The new rules were intended to improve safety for motorcyclists but in the original form, these would have been expensive to implement and would have resulted in substantial c
  • Crash avoidance technology on test
    August 22, 2012
    Nearly 3,000 cars, trucks and buses equipped with connected Wi-Fi technology to enable vehicles and infrastructure to ‘talk’ to each other in real time to help avoid crashes and improve traffic flow, began traversing Ann Arbor's streets yesterday as part of a year-long safety pilot project by the US Department of Transportation. Ray LaHood, US Transportation Secretary, joined elected officials and industry and community leaders on the University of Michigan campus to launch the second phase of the Safety Pi