Skip to main content

Magic microcapsules could prevent potholes

A UK university has started research on using solar-to-ground heat exchange to prevent freeze-thaw damage to roads.
By Kristina Smith December 4, 2023 Read time: 2 mins
Upheaval for the road pavement sector: could freeze-thaw damage be avoided using solar-to-ground heat exchange technology? (image © Ints VikmanisDreamstime)

A five-year research programme led by Benyi Cao, a lecturer in civil and environmental engineering at the University of Surrey, aims to unlock a cost-effective way of using solar-to-ground heat exchange to prevent freeze-thaw damage of road pavements.

Freeze-thaw action is one of the main causes of potholes in the UK, explained Cao, alongside traffic loads and water. By preventing the road temperature falling below zero, roads would last longer, reducing the cost and carbon emissions due to maintenance works and improving road safety.

“There were 5,000 pothole-related injuries over the past five years,” said Cao.

The £80,000 project, 80% funded by the Royal Academy of Engineering and 20% by Surrey University, will boost the heat-storing potential of soil beneath or beside the roads using special microcapsules under development by advanced engineering materials company Versarien. “Soil does not naturally have enough heat storage capacity which is why we want to introduce the capsules to increase it."

The capsules will consist of an inner core of a phase change material (PCM), a substance, such as paraffin, which releases or stores a huge amount of energy as it changes phase between liquid and solid. This will be surrounded by a polymer and coated in graphene which has a high thermal conduction capacity. Versarien will be developing the capsules with Cambridge University, where Cao previously worked extensively on microcapsule technology.

The system would see a network of pipes, with water running through them, installed in the road layer beneath the surface. These would be connected to a network of storage pipes in the sub-grade of the road. In the summer, heat would be taken away from the road in and stored in the ground so that in the winter, it could be reversed to prevent the road pavement from freezing.

Initially, the system could be used with a heat pump, to boost the temperature of the warmer water in the winter. Or it may even be possible to run the system without a heat pump, said Cao, which would be a far more cost-effective solution.

The development of the microcapsules is already underway, together with the start of numerical modelling to simulate the mechanical performance of the road with heating. The next step will be to install a test system on the University of Surrey campus, with a location already earmarked. National Highways will then trial it somewhere on the strategic road network.

Related Content

  • National pothole day for UK
    January 15, 2025
    Today is national pothole day for the UK.
  • Cummins at the forefront of power technology
    April 18, 2022
    Cummins has been a leader in the development of innovative power solutions for over 100 years and continues to push the boundaries of technology
  • Highways: environmental problem or environmental enhancement?
    March 21, 2016
    Highways need not be a blight on the countryside that many people, urban planners included, believe they will always be. By Bram Miller, director, and Martin Broderick, environmental consultant, at Ramboll Environ While the world’s highway networks bring undoubted economic and social benefits, they are generally perceived to lead to negative environmental impacts. Some may consider this an unfair reputation, but it is difficult to argue that in the majority of cases both the construction and operation of
  • Gritty decisions need Smart Modelling
    April 11, 2022
    Mark Fisher, principal strategic consultant with Amey Consulting, explains how its data-led Smart Winter modelling improved a UK local government’s winter gritting efficiency by 18%.