Skip to main content

Long life pavements trials

Seven countries have confirmed their participation in field trials for the proposed third phase of the Long Life Pavement Project, being operated under the auspices of the OECD (Organisation for Economic Development and Cooperation) and International Transport Forum (ITF).
July 6, 2012 Read time: 2 mins
Seven countries have confirmed their participation in field trials for the proposed third phase of the Long Life Pavement Project, being operated under the auspices of the OECD (Organisation for Economic Development and Cooperation) and 1102 International Transport Forum (ITF).

France, New Zealand, Denmark, Belgium, the UK, Ukraine and Spain have confirmed while the US, Israel and South Africa have expressed interest and could also participate in the trials.

The third phase requires that countries take an active role in constructing roads using epoxy asphalt and high performance cementitious materials (HPCM).

France indicated it will launch two construction sites using HPCM (a roundabout and a 100m section of urban road). In the latter case, a parallel experiment will take place to assess the de-pollution effect of Titane Dioxide.

New Zealand has already started constructing sections of road using epoxy asphalt.

The Long Life Pavements project began in 2002, and in the first phase an economic evaluation of long life wearing course was performed. It concluded that long life pavement surfacing costing around three times that of traditional wearing courses could be economically viable, assuming an expected life of 30 years and an annual average daily traffic of 80,000 or more.

It also concluded that laboratory tests should be conducted on the two candidate materials identified (epoxy asphalt and high performance cementitious material).

In Phase 2 (2005-08), the two materials were tested in laboratories where it was found that both materials performed well, and it was concluded that the materials should be implemented on large scale demonstrations to test production, laying and performance issues

The objectives of Phase 3 are to coordinate trials in order to research production, laying and quality control, as well as cost, and demonstrate the performance of such surfacing under real traffic and environmental conditions.

For more information on companies in this article

Related Content

  • Environmental impact drives warm mix growth
    November 14, 2012
    Warm mix asphalt can save energy and the environment, cutting emissions of carbon dioxide and other harmful gases, but are environmental arguments enough for clients and contractors? Kristina Smith asks Though popular in the United States, warm mix asphalt is still a technology waiting to happen in the rest of the world. Chemical companies who imagined a meteoric rise in sales are still waiting for the right economic conditions to allow warm mix to start taking serious market share from hot mix. “In Europe
  • Bitumen technology suppliers seek new ways to save money and work more efficiently
    April 24, 2013
    When World Highways decided to ask some of the industry’s leading suppliers what the future holds for bitumen, we found out - not surprisingly in the current economic climate - that it’s all about saving money. Kristina Smith reports. How quickly the tide turns. Just two years ago, saving carbon and the planet was moving up many countries’ political agendas. Now politicians in Europe and beyond have been forced to park commitments in the face of economic austerity. “The big issue with local government is th
  • Iterchimica’s Gipave used in major UK road trial
    October 3, 2024
    This is the first time graphene-enhanced Gipave has been applied on the UK’s strategic road network - major highways and motorways - and follows ongoing trials on local roads.
  • Asphalt reinforcement extends road life
    July 12, 2012
    Special reinforcements can extend the life of an old or new road, and also offer environmental benefits. Patrick Smith reports. Asphalt reinforcement can extend the service life of a resurfaced road by a factor of 3-4, says Huesker, developers of the HaTelit range of asphalt reinforcement. Aimed at preventing the propagation of reflective cracking from an old asphalt layer through a new surface course, Huesker claims the formation of reflective cracking is considerably delayed or even completely prevented u