Skip to main content

Long life pavements trials

Seven countries have confirmed their participation in field trials for the proposed third phase of the Long Life Pavement Project, being operated under the auspices of the OECD (Organisation for Economic Development and Cooperation) and International Transport Forum (ITF).
July 6, 2012 Read time: 2 mins
Seven countries have confirmed their participation in field trials for the proposed third phase of the Long Life Pavement Project, being operated under the auspices of the OECD (Organisation for Economic Development and Cooperation) and 1102 International Transport Forum (ITF).

France, New Zealand, Denmark, Belgium, the UK, Ukraine and Spain have confirmed while the US, Israel and South Africa have expressed interest and could also participate in the trials.

The third phase requires that countries take an active role in constructing roads using epoxy asphalt and high performance cementitious materials (HPCM).

France indicated it will launch two construction sites using HPCM (a roundabout and a 100m section of urban road). In the latter case, a parallel experiment will take place to assess the de-pollution effect of Titane Dioxide.

New Zealand has already started constructing sections of road using epoxy asphalt.

The Long Life Pavements project began in 2002, and in the first phase an economic evaluation of long life wearing course was performed. It concluded that long life pavement surfacing costing around three times that of traditional wearing courses could be economically viable, assuming an expected life of 30 years and an annual average daily traffic of 80,000 or more.

It also concluded that laboratory tests should be conducted on the two candidate materials identified (epoxy asphalt and high performance cementitious material).

In Phase 2 (2005-08), the two materials were tested in laboratories where it was found that both materials performed well, and it was concluded that the materials should be implemented on large scale demonstrations to test production, laying and performance issues

The objectives of Phase 3 are to coordinate trials in order to research production, laying and quality control, as well as cost, and demonstrate the performance of such surfacing under real traffic and environmental conditions.

For more information on companies in this article

Related Content

  • Shell Bitumen’s new technology cuts air-polluting emissions by 40%
    May 15, 2019
    Shell Bitumen has developed molecular technology that cuts 40% of air-polluting emissions -Kristina Smith reports Shell Bitumen is launching a new technology which drastically reduces the amount of harmful air pollutants produced when asphalt mixes are manufactured and laid on the roads. Called Shell Bitumen FreshAir, it reduces six of the seven pollutants produced by at least 40%. The seventh, ozone, is produced in too small an amount to measure changes. “The World Health Organisation has said that 90%
  • Asphalt paving trial for mat quality using MTVs
    December 8, 2015
    An asphalt paving trial at Rome Airport tested mat quality with and without the use of MTVs Rome’s airport Fiumicino or the Leonardo da Vinci Airport of Rome is one of Europe’s busiest airports and lies 25.6km southwest of the city, a 30-minute train ride away.
  • The acronym syndrome
    July 31, 2012
    Those who navigate the labyrinth that is the European Union and the numerous trade and research groups will be struck by the number of acronyms. In a short series, EUROFILE gives a snapshot of those engaged in the roads industry. In this issue we look at FEHRL (Forum of European National Highway Research Laboratories) based in Brussels, Belgium Established in 1989, FEHRL is made up directors of national research institutes: 30 in all from within the European Union, European Free Trade Association (EFTA) an
  • A breakthrough in the horizontal reuse of PA (porous asphalt)
    May 12, 2016
    An ambitious objective has led to significant steps in the reuse of PA (porous asphalt). While the market incidentally produces PA with a maximum of 30% of recovered raw materials, BAM has introduced its own innovations, enabling more than 90% of raw materials to be reused. And this year, subsidies from the European Commission will enable the LE2AP demonstration project to be constructed: one kilometre of sustainable PA. Large-scale production is also being developed.