Skip to main content

Electric vehicle range extension innovation

The latest research into electric vehicles suggests that range extensions of 10% or even more can be achieved through the utilisation of smart traffic technologies. By combining information gleaned from real-time traffic information, road type and gradient and also vehicle payload, researchers at the University of California, Riverside believe they can optimise route and performance to extend the range of electric vehicles.
August 7, 2012 Read time: 3 mins
The latest research into electric vehicles suggests that range extensions of 10% or even more can be achieved through the utilisation of smart traffic technologies. By combining information gleaned from real-time traffic information, road type and gradient and also vehicle payload, researchers at the University of California, Riverside believe they can optimise route and performance to extend the range of electric vehicles. The team was given a grant by the California Energy Commission to work on an algorithm that could use information such as traffic data and payload to provide drivers with an optimised route requiring the lowest energy consumption. This research follows on from an earlier project that revealed navigation systems designed to provide energy efficient routes can reduce fuel consumption and greenhouse gas emissions for internal combustion engine powered vehicles by anything from 5-15%.

While many electric vehicles offer working ranges of around 160km according to their manufacturers, actual range can vary from 80-220km. This is due to a combination of factors including ambient temperature, traffic volumes and gradients encountered along the route. Batteries typically perform less efficiently at lower temperatures, with range being reduced in winter time for example, while using heating or air-conditioning systems will further reduce range. Electric vehicles do not waste power when sitting with motors in a traffic jam as the motors are at rest, unlike internal combustion engine-powered vehicles that will generally have the engine idling. In this respect, electric vehicles are typically less wasteful of energy in dense traffic situations than internal combustion engine-powered vehicles. But, in slow speed, stop-go congestion an electric vehicle is not operating at optimum speed and is therefore running less efficiently.

The recent explosion in the market for GPS navigation systems has developed technology aimed at reducing distance travelled, but these systems do not typically optimise routes in terms of road gradients and have to be programmed to avoid congested areas. Continuous driving at optimum speeds, typically 80km/h, allows for greater range. Roads with steeper gradients may use more energy than slightly longer routes avoiding climbs. And choosing routes through built-up areas with traffic lights and junctions will slow a vehicle down and make for more inefficient use of energy.

The research team is based at the Center for 4106 Environmental Research and Technology (CE-CERT), which is part of the Bourns College of Engineering. The project will gather energy consumption data from electric vehicles being operated in a range of on-road conditions, including different speeds, congestion levels, road types, and gradients, as well as with different payloads. The data will then be analysed to provide models that can determine energy consumption and provide the basis for an eco-routing algorithm. This will then be programmed into a specially-modified navigation system and allow initial testing of the concept in an electric vehicle.

For more information on companies in this article

Related Content

  • Developments in hybrid vehicles
    February 27, 2012
    There is an array of future vehicle solutions in development - Mike Woof reports. Ever since Henry Ford's Model T showed that the motor car could provide transport for ordinary people rather than being an exclusive toy of the rich, vehicle numbers have exploded. In every country around the world, vehicle ownership continues to grow.
  • Electric power projects planned
    January 26, 2018
    While diesel engines continue to be developed, there is no mistaking the current plans for electric driveline projects - Mike Woof writes The growing worldwide consensus on the massive threat to humanity posed by climate change means that the need to reduce exhaust emissions from transport and construction is becoming ever more pressing. As a result, industry is changing and new solutions are being found for transport and construction that will help lower environmental impact. Although many solutions are
  • Engine innovation for diesels and electrics
    October 2, 2018
    Engine firms continue to develop new power solutions and refine existing technologies - Mike Woof writes There has been strong pressure against internal combustion engines worldwide, with the scandal over the emissions from diesel powered private cars has strengthening opinion against these engines. Diesel engine firms are taking the long view by offering future power options such as alternative fuels and electric systems. The engine builders are also hard at work ensuring that power units for the indust
  • Electric vehicle range set to grow
    December 17, 2012
    Research shows that keeping batteries within optimum operating temperatures will increase the range of electric vehicles. It is widely known that batteries perform less well in cold weather but it is often overlooked that overheating will also cause problems. For batteries to provide a long service life, overheating has to be prevented and temperatures kept within the optimum operating range of 20-35°C. But driving in hot ambient conditions can push a battery temperature outside the optimum range and this c