Skip to main content

Cosmic rays to monitor bridge condition

Cosmic rays can be used to monitor bridge condition.
January 2, 2025 Read time: 4 mins
Innovative cosmic ray technology could be used to determine bridge condition

 

A new research project is setting out to use cosmic rays to measure the structural integrity of the UK’s ageing transport infrastructure.

Dr David Mahon of the University of Glasgow has received £459,000 in new funding from UKRI’s Science and Technology Facilities Council (STFC) to support the project, which aims to reduce the cost and environmental impact of repairs to road and rail bridges by enabling earlier detection of structural problems.

The project builds on Dr Mahon’s expertise in muography, a technique which uses measurements of cosmic rays to create detailed 3D images of the interiors of structures.

When the rays collide with the nuclei of the gases found in the planet’s atmosphere, the impact releases particles known as muons.

When muons strike objects on earth, they are deflected very slightly from their course. The amount of deflection depends on the chemical composition of the object they hit, with heavier elements causing greater deflection.

Measuring the deflection patterns over time, paired with sophisticated computer analysis, allows researchers to build up images of structures which are impossible to produce using other non-destructive techniques like X-rays.

Lynkeos Technology Ltd, a spinout from the University of Glasgow, is already using muography techniques developed by Dr Mahon and colleagues to help the nuclear industry map the locations of pieces of radioactive waste stored in concrete-filled containers at some of the UK’s nuclear power plants.

Over the next two years, Dr Mahon will work on reducing the size and improving the scanning speed of the muon detector technology to make it more suitable to be taken out of the lab and stationed in real-world conditions to take cosmic ray measurements. In partnership with Transport Scotland, the detectors will be tested at a series of bridges across the city of Glasgow.

Dr Mahon, of the University of Glasgow’s School of Physics & Astronomy, said: “There are more than 74,000 road and rail bridges across the UK, most of which are made from reinforced concrete, and many of which were built between 50 and 60 years ago. That means they’re now getting close to the end of their intended lifespan, so it’s important that they are properly monitored to ensure that they can be repaired when necessary.

“Current inspection methods often require exposing steel substructure, which can lead to rust and further weakening when exposed to rain, so non-destructive testing methods which allows maintenance crews to see inside.

“Muography is a technique that’s already proven its worth in the nuclear industry, and it seems ideally placed to enable non-destructive testing in transport infrastructure too. This grant from the STFC will enable us to build on our previous achievements and build new, more portable test kits that can identify fatigue or defects at a much earlier stage than is currently possible. Being aware of problems earlier, before they cause significant damage or disruption, could help bring the overall cost of repairs down.”

Hazel McDonald, Chief Bridge Engineer at Transport Scotland, said: ““We’re proud to be supporting the University of Glasgow and Lynkeos Technology’s innovative development of cosmic-ray muography with field trials on our network of road bridges.  Muography’s ability to look deeper into structures has the potential to transform structural integrity inspection, ensuring ageing public structures are safe and reducing travel disruption.”

In addition to making the muon-detector technology more portable and power-efficient, the project will also find new ways to harness the power of machine learning to speed up the process of taking cosmic ray measurements.

Once the project’s initial research phase is complete, Lynkeos Technology Ltd will work to bring the updated technology to market.

Dr Mahon added: “Extending the lifespan of our built infrastructure through non-destructive testing could also help countries around the world achieve their net-zero goals. If we can help these structures stay in service for longer, we can reduce the need for replacement structures. Concrete and steel, which are still required to build most of our major infrastructure projects, are produced using carbon-emitting materials and processes, so keeping structures working safely for longer could help reduce the carbon footprint of our roads and bridges.”

 

Related Content

  • Specifying barriers correctly for optimum roadway safety
    April 29, 2015
    Mike Dreznes, executive vice president at the International Road Federation (IRF) discusses the proper utilisation of longitudinal barriers as a road safety priority Road authorities have a duty of care to ensure infrastructure not only meets safety requirements but provides protection for all road users. Crash barriers play an essential role in maximising safety, lowering the risk of sudden impact for road users and also allowing redirective capabilities.
  • Specifying barriers correctly for optimum roadway safety
    April 29, 2015
    Mike Dreznes, executive vice president at the International Road Federation (IRF) discusses the proper utilisation of longitudinal barriers as a road safety priority Road authorities have a duty of care to ensure infrastructure not only meets safety requirements but provides protection for all road users. Crash barriers play an essential role in maximising safety, lowering the risk of sudden impact for road users and also allowing redirective capabilities. If a road authority has a rigid hazard locate
  • Getting to the heart of road noise - to eliminate disturbance
    May 20, 2016
    Traffic noise is a widespread nuisance that can impact where and how we choose to live, property prices and our quality of life. Better planning and use of mitigation factors can make a significant difference Traffic is one of the top five sources of nuisance noise – along with industry, construction, sport and leisure and general neighbourhood noise. Road traffic is also one of the most diverse sources of noise. You know where it’s going to come from, but less often what the noise will be as the volu
  • FEHRL Brussels event proves successful
    July 1, 2013
    The recent Forum of European National Highway Research Laboratories (FEHRL) Infrastructure Research Meeting 2013 in Brussels (FIRM 2013) attracted a large number of attendees, from Europe as well as further overseas. The event included a number of presentations on key road infrastructure topics, with major input also from other associations such as the European Asphalt Paving Association (EAPA). The plenary session drew high-level speakers from a number of National Road Administrations and European institut