Skip to main content

Composite bridge awards

The American Composites Manufacturers Association (ACMA) has announced its Awards for composites excellence (ACE) at the COMPOSITES 2010 event. The awards were presented in a number of categories, with two awards gone to composite bridge structures.
February 8, 2012 Read time: 2 mins
The 1505 American Composites Manufacturers Association (ACMA) has announced its Awards for composites excellence (ACE) at the COMPOSITES 2010 event. The awards were presented in a number of categories, with two awards gone to composite bridge structures. The most creative application award was presented to AEWC Advanced Structures & Composites Center, 1507 University of Maine, Orono, Maine, for its Bridge-in-a-Backpack, a hybrid composite-concrete bridge combining the benefits of advanced composite materials and concrete. The concept offers a cost effective, long-lasting, and easy-to-erect bridge technology. This lightweight, corrosion resistant system for short-to-medium-span bridge construction uses FRP composite arch tubes that act as a stay-in-place form, structural reinforcement, and environmental protection for concrete fill. The lightweight arches can be placed quickly by hand. The infinite possibility award was presented to 1509 Harbor Technologies, Brunswick, Maine, for its hybrid composite beam (HCB), a new structural member developed for use as a girder in bridges and other structures. This is comprised of a shell, compression reinforcement and tension reinforcement. The shell consists of a fibre reinforced polymer box beam. The compression reinforcement consists of concrete, pumped into a profiled conduit (generally an arch) within the beam shell, while carbon, glass or steel fibres anchored at the ends of the compression reinforcement provide the tension reinforcement. The HCB combines the strength and stiffness of concrete and steel with the lightweight and corrosion advantages of composite materials.

Related Content

  • Modern formwork systems - fast, flexible, safe
    February 21, 2012
    Speed of erection, safety, cost-efficiency and flexibility are among the attributes of modern formwork systems. Modern formwork and scaffolding systems are attractive in particular for their speed of erection, safety, cost-efficiency and flexibility.
  • Increasing demand for geosynthetics reinforcement
    May 3, 2012
    Geosynthetics have a wide variety of uses and these include providing extra strength in highway construction. Demand for geosynthetics in the United States alone is projected to increase 4.4% per year through to 2010 to more than 727 million m². Geosynthetics, used worldwide in the highway sector for strengthening, include geotextiles, geomembranes, geonets, geogrids, geosynthetic clay liners, preformed geocomposites, geocells and geofoams. The US advances will be fuelled by a recovery in nonbuilding constr
  • Increasing demand for geosynthetics reinforcement
    April 16, 2012
    Demand for geosynthetics in the United States alone is projected to increase 4.4% per year through to 2010 to more than 727 million m². Geosynthetics, used worldwide in the highway sector for strengthening, include geotextiles, geomembranes, geonets, geogrids, geosynthetic clay liners, preformed geocomposites, geocells and geofoams. The US advances will be fuelled by a recovery in nonbuilding construction. Additionally, geosynthetics will continue to increase their use in a wider range of applications
  • Washington DC’s historic bridge replacement project
    June 11, 2019
    The project to replace a historic bridge in US capital Washington DC is providing major challenges for its builders - Mike Woof writes