Skip to main content

Composite bridge awards

The American Composites Manufacturers Association (ACMA) has announced its Awards for composites excellence (ACE) at the COMPOSITES 2010 event. The awards were presented in a number of categories, with two awards gone to composite bridge structures.
February 8, 2012 Read time: 2 mins
The 1505 American Composites Manufacturers Association (ACMA) has announced its Awards for composites excellence (ACE) at the COMPOSITES 2010 event. The awards were presented in a number of categories, with two awards gone to composite bridge structures. The most creative application award was presented to AEWC Advanced Structures & Composites Center, 1507 University of Maine, Orono, Maine, for its Bridge-in-a-Backpack, a hybrid composite-concrete bridge combining the benefits of advanced composite materials and concrete. The concept offers a cost effective, long-lasting, and easy-to-erect bridge technology. This lightweight, corrosion resistant system for short-to-medium-span bridge construction uses FRP composite arch tubes that act as a stay-in-place form, structural reinforcement, and environmental protection for concrete fill. The lightweight arches can be placed quickly by hand. The infinite possibility award was presented to 1509 Harbor Technologies, Brunswick, Maine, for its hybrid composite beam (HCB), a new structural member developed for use as a girder in bridges and other structures. This is comprised of a shell, compression reinforcement and tension reinforcement. The shell consists of a fibre reinforced polymer box beam. The compression reinforcement consists of concrete, pumped into a profiled conduit (generally an arch) within the beam shell, while carbon, glass or steel fibres anchored at the ends of the compression reinforcement provide the tension reinforcement. The HCB combines the strength and stiffness of concrete and steel with the lightweight and corrosion advantages of composite materials.

Related Content

  • Road markings important for road safety
    February 20, 2012
    Manufacturers are constantly upgrading marking materials and equipment. Now those responsible for highways are being asked to do more as Patrick Smith reports. A recent report claimed that nearly one-third of the length of Britain's single carriageway A-roads have white lines so worn out that they do not meet recognised standards. According to the LifeLines Report, an assessment of more than 2,400km of the road network, Britain's most dangerous roads have the most worn-out centre line markings of all, leavi
  • Italy’s renaissance bridge
    July 21, 2020
    Italian consulting company Italferr created a digital twin for designing the new Genoa bridge and won accolades at Bentley Systems: Bentley Year in Infrastructure Awards
  • PERI’s balancing act at the Harpe Bru Bridge in Norway
    May 24, 2016
    Plans for the European Route E6 expansion in Norway include the 320m-long Harpe Bru Bridge over the Gudbrandsdalen Lågen River, at Sør-Fron in Oppland province. For the superstructure, PERI civil engineering technology experts developed a balanced cantilevered solution based on the VARIOKIT Engineering Construction Kit. Statens vegvesen, Norway’s agency for public road building, selected an extradosed cable-stayed bridge design – the first such bridge in Norway. It combines the load-bearing behaviour
  • New equipment for materials testing
    January 13, 2014
    Leading formwork manufacturers have secured some impressive contracts in Africa, as the continent’s transport infrastructure continues to improve at a rapid pace. Meanwhile, other bridgework equipment companies are also seeing their products in demand in Africa, as well as North America and Australia. Guy Woodford reports