Skip to main content

Colas trials 'solar road'

Colas is in discussions with clients who have suitable sites where the highway services provider could trial its solar road solution, Wattway. Colas says that the solar panels that make up the photovoltaic road surfacing technology are lightweight and strong and can be installed on top of an existing road surface. The panels are only 7mm thick and are applied on the surface with a high performance resin. A glass bead resin coating is also applied to allow the surface to provide acceptable frictional perf
October 26, 2016 Read time: 2 mins
184 Colas is in discussions with clients who have suitable sites where the highway services provider could trial its solar road solution, Wattway. Colas says that the solar panels that make up the photovoltaic road surfacing technology are lightweight and strong and can be installed on top of an existing road surface.

The panels are only 7mm thick and are applied on the surface with a high performance resin. A glass bead resin coating is also applied to allow the surface to provide acceptable frictional performance without significantly affecting the efficiency of solar panels.

Carl Fergusson, Colas executive director of strategy and development, said the first trial is underway in France and UK trials will form part of about 100 world-wide. According to Colas, the power generated by Wattway has the potential to be used for highways and transportation infrastructure, such as variable message signs and street lights. But it also could be returned to the grid or used to supply energy to nearby homes and businesses. It is particularly well suited for smart-grids and short-circuit electricity production, as the need for new sources of energy and electric mobility continues to rise.

Each solar panel is an array of 15cm-wide cells making a very thin film of polycrystalline silicon that transforms solar energy into electricity. These extremely fragile photovoltaic cells are made tough by coating them in a watertight multilayer substrate composed of resins and polymers. This covering is translucent enough to allow sunlight to pass through but resistant enough to withstand even large-vehicle traffic.

The composite is also designed to adapt to the pavement’s natural thermal expansion. The surface that is in contact with vehicle tyres is treated to ensure skid-resistance equivalent to conventional asphalt mixes. Electrical connections can be installed at the edge of the carriageway or in ducts integrated in the panels themselves. Lastly, electronic circuit breakers ensure safety.

For more information on companies in this article

Related Content

  • Specialist asphalt supply for road upgrade
    November 10, 2021
    A major road in Norfolk has been improved following the installation of Tarmac’s largest ever supply of a specialist asphalt solution. This material grade has been designed to maintain roads where the underlying concrete has deteriorated
  • Nigeria has built a major road link from concrete
    September 14, 2016
    A new concrete road is now open to traffic in Nigeria’s Kogi State. This is of note as the new 24km road is the now the country’s longest to be made from concrete. The new road was built in a joint venture partnership between Nigerian firm Dangote Construction and Brazilian company Andrade Gutierrez. The new road connects Kabba with Obajana. Part of the Dangote Group, Dangote Construction was well placed to carry out the work as it operates its Obajana Cement production facility, at Obajana. This new road
  • Partnership to evaluate second-life use of EV battery packs
    March 16, 2012
    Nissan North America, leading power and technology group ABB, along with 4R Energy and Sumitomo Corporation of America, have formed a partnership to evaluate the reuse of lithium-ion battery packs that power the Nissan Leaf.
  • Rigorous testing for high performance materials
    February 9, 2012
    Today’s highways require high performance materials, and this means rigorous testing as Patrick Smith reports Highways are under greater pressure than ever today and asphalts have to grant high performances in order to withstand traffic and meet the standards. Studying the plastic permanent deformations in hot mix asphalt (HMA) is very important to obtain useful information for mix designers as an appropriate mix design will reduce the formation of unevenness on road surface. To investigate the effect of mi