Skip to main content

Battery extension project from GE, Ford and University of Michigan

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today. “The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research.
August 7, 2012 Read time: 2 mins
6259 GE researchers, in partnership with 3423 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5186 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Bridge monitoring technology
    July 1, 2019
    A new partnership between SGS and AIMSight is allowing fully remote continuous structural health monitoring (SHM) of bridges. This utilises using smart crack monitoring sensors and data analytics and is compliant with existing NDT standards. The new SGS AIMSight structural health monitoring solution provides continuous, real time monitoring of the health of critical assets to a higher level of precision than conventional SHM systems and structural inspection schemes. This serves as an early warning system
  • Safe and efficient urban mobility for Africa
    May 17, 2023
    Transitioning to zero-carbon transport globally is essential to keep climate change in check. Yet seven years after the Paris Climate Agreement, transport emissions are still rising. In a new op-ed, Nina Elter argues that a radical shift in our approach to transportation sustainability is required. Every year, governments around the world invest more than US$700 billion in road infrastructure. While these investments yield significant economic and social returns, transport continues to generate large costs on societies, in the form of harmful emissions, traffic injuries and lost time due to congestion.
  • Gritty decisions need Smart Modelling
    May 27, 2022
    Mark Fisher, principal strategic consultant with Amey Consulting, explains how its data-led Smart Winter modelling improved a UK local government’s winter gritting efficiency by 18%
  • Fugro organising road maintenance event in UK
    May 16, 2013
    Survey specialist, Fugro Aperio is organising the one day Developments in Highways Assessment (DIHA 2013) conference. This event takes place on July 16th, 2013, at the Midlands Engineering Centre in the UK city of Birmingham. The use of survey data in predictive modelling for improved highways asset management will be a particular focus at the DIHA 2013 conference in July. Richard Barnes will highlight Stockport Council’s work to develop a model for strategic road maintenance investment integrating local co