Skip to main content

Battery extension project from GE, Ford and University of Michigan

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today. “The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research.
August 7, 2012 Read time: 2 mins
6259 GE researchers, in partnership with 3423 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5186 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Driverless car created at Oxford University
    February 18, 2013
    Scientists at Oxford University in England have developed a driverless car system that can be installed in existing cars. A Nissan Leaf electric car has been used to test the system developed by a team headed by Professor Paul Newman. The car can deal with adverse weather conditions and halts for pedestrians, as well as being able to take over from the driver when negotiating regular commutes or traffic jams. Professor Newman reportedly describes it as an advanced driver assistance system in essence, claimi
  • App upgrades and power choices
    December 10, 2024
    New power options and app options are available for the crushing and screening segment
  • New equipment for materials testing
    January 13, 2014
    Leading formwork manufacturers have secured some impressive contracts in Africa, as the continent’s transport infrastructure continues to improve at a rapid pace. Meanwhile, other bridgework equipment companies are also seeing their products in demand in Africa, as well as North America and Australia. Guy Woodford reports
  • Cummins investing in sustainable power systems
    July 12, 2024
    Cummins is investing US$75 million in growing capacity for sustainable power systems