Skip to main content

Bacteria provide route to future fuels

An innovative future fuel source could be provided by bacteria, according to researchers working with the US Department of Energy (DOE). Strains of Escherichia colibacteria have been developed that are able to digest switchgrass biomass and then synthesise the sugars into three transportation fuels.
April 26, 2012 Read time: 2 mins
An innovative future fuel source could be provided by bacteria, according to researchers working with the 5275 US Department of Energy (DOE). Strains of Escherichia colibacteria have been developed that are able to digest switchgrass biomass and then synthesise the sugars into three transportation fuels.

The work has been carried out by the DOE’s 5287 Joint BioEnergy Institute (JBEI) and the initial results suggest that the bacteria can carry out this process without the need for help from enzyme additives. The JBEI claims that using the bacteria will cut a significant cost out of processing switchgrass biomass into fuel by removing the need for expensive enzymes to depolymerise cellulose and hemicellulose into fermentable sugars. According to the JBEI, this will allow a major reduction in fuel production costs by consolidating the depolymerisation of cellulose and hemicellulose into sugars, and fermenting the sugars into fuels, into a single step.

A paper in the 5288 Proceedings of the National Academy of Sciences (PNAS) describes this work. The paper is called, "Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli."

JBEI researchers engineered strains of the bacteria to express several enzymes that enable them to digest cellulose and hemicellulose. This is the first successful demonstration of the production of all three forms of transportation fuels (petrol, kerosene and diesel) using switchgrass, one of the highest potential feedstocks for advanced biofuels.

The cellulolytic and hemicellulolytic strains of the bacteria can be combined as co-cultures on a sample of switchgrass. These were further engineered with three metabolic pathways allowing the bacteria to produce fuel substitute or precursor molecules suitable for petrol, diesel and kerosene.

Related Content

  • New driveline developments boost machine efficiency
    April 24, 2013
    Advances in transmission technology will help to optimise machine performance – writes Mike Woof. As construction machines have become more sophisticated, so have the transmission systems used in items of equipment. Advances in electronics and software in particular have allowed the development of integrated transmissions. These operate more efficiently and help optimise power delivery from an engine, boosting torque response and cutting fuel consumption and emissions at the same time. The smart electronics
  • Geosynthetics revolutionise ground stabilisation
    March 13, 2012
    As powerful fabrics, geosynthetics and geotextiles have a wide range of applications in many civil engineering applications including roads and airfields. Geosynthetics specialist Tensar is introducing a radical new product that it thinks will revolutionise the construction industry. According to the company, its new product represents the "biggest advance in ground stabilisation technology for 25 years. Six years in development, it is said to offer major improvements in aggregate confinement and soil stabi
  • Benninghoven’s burning ambition for LEP’s future
    September 30, 2013
    Benninghoven, the leading asphalt plant and accessories manufacturer, believes the greater use of Lignite Energy Pulverized (LEP) during asphalt plant production will ensure huge long-term financial savings for plant operators currently using alternative combustibles. Guy Woodford reports The claimed impact of LEP on the German asphalt plant market is impressive. As reported in the July-August 2013 issue of World Highways, 80% of all asphalt plants operated in the country are said by LEP Europe-wide
  • Smart trucks - promoting truck operation standards
    April 12, 2012
    Paul Nordengen of South Africa's Council for Scientific and Industrial Research (CSIR) introduces a comprehensive self-regulation initiative to improve road wear, road safety and transport productivity in South Africa