Skip to main content

Bacteria provide route to future fuels

An innovative future fuel source could be provided by bacteria, according to researchers working with the US Department of Energy (DOE). Strains of Escherichia colibacteria have been developed that are able to digest switchgrass biomass and then synthesise the sugars into three transportation fuels.
April 26, 2012 Read time: 2 mins
An innovative future fuel source could be provided by bacteria, according to researchers working with the 5275 US Department of Energy (DOE). Strains of Escherichia colibacteria have been developed that are able to digest switchgrass biomass and then synthesise the sugars into three transportation fuels.

The work has been carried out by the DOE’s 5287 Joint BioEnergy Institute (JBEI) and the initial results suggest that the bacteria can carry out this process without the need for help from enzyme additives. The JBEI claims that using the bacteria will cut a significant cost out of processing switchgrass biomass into fuel by removing the need for expensive enzymes to depolymerise cellulose and hemicellulose into fermentable sugars. According to the JBEI, this will allow a major reduction in fuel production costs by consolidating the depolymerisation of cellulose and hemicellulose into sugars, and fermenting the sugars into fuels, into a single step.

A paper in the 5288 Proceedings of the National Academy of Sciences (PNAS) describes this work. The paper is called, "Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli."

JBEI researchers engineered strains of the bacteria to express several enzymes that enable them to digest cellulose and hemicellulose. This is the first successful demonstration of the production of all three forms of transportation fuels (petrol, kerosene and diesel) using switchgrass, one of the highest potential feedstocks for advanced biofuels.

The cellulolytic and hemicellulolytic strains of the bacteria can be combined as co-cultures on a sample of switchgrass. These were further engineered with three metabolic pathways allowing the bacteria to produce fuel substitute or precursor molecules suitable for petrol, diesel and kerosene.

Related Content

  • Bitumen technology: three ways to more sustainable roads
    May 14, 2020
    This issue we look at three case studies showcasing new technologies designed to deliver more sustainable paving solutions.
  • Asphalt plant technology meets market needs
    February 16, 2012
    Plants for mixing asphalt are becoming more sophisticated than ever, while users are looking for ecological and technological benefits. Patrick Smith reports. When the Adige Bitumi Group decided to renew its old M 260 plant it chose to collaborate with Marini for the design and development of a plant with production of 280-300tonnes/hour.
  • Road repairs take to the air
    November 29, 2018
    Automated road repairs using 3D printing could save money and reduce disruption, reports Kristina Smith It’s the middle of the night and in the street below a team is busy carrying out repairs to the road surface. But there isn’t a human in sight. A road-repair drone has landed at the site of a crack and a 3D asphalt printer is now busy filling in that crack. A group of traffic cone drones have positioned themselves around the repair location to protect the repair drone and divert traffic around it.
  • A pothole damage breakthrough?
    April 11, 2013
    Academic research by two universities in the same UK city shows that patch repairs on potholes could be far more durable if a few simple techniques were consistently used. Guy Woodford reports. Repairing pothole damage to highways and vehicles across Europe costs responsible authorities and individual motorists hundreds of millions of euros each year. Yet it has cost just €20,204 to make the potentially crucial first step in identifying a method of keeping highways across the continent and beyond pothole fr