Skip to main content

Bacteria provide route to future fuels

An innovative future fuel source could be provided by bacteria, according to researchers working with the US Department of Energy (DOE). Strains of Escherichia colibacteria have been developed that are able to digest switchgrass biomass and then synthesise the sugars into three transportation fuels.
April 26, 2012 Read time: 2 mins
An innovative future fuel source could be provided by bacteria, according to researchers working with the 5275 US Department of Energy (DOE). Strains of Escherichia colibacteria have been developed that are able to digest switchgrass biomass and then synthesise the sugars into three transportation fuels.

The work has been carried out by the DOE’s 5287 Joint BioEnergy Institute (JBEI) and the initial results suggest that the bacteria can carry out this process without the need for help from enzyme additives. The JBEI claims that using the bacteria will cut a significant cost out of processing switchgrass biomass into fuel by removing the need for expensive enzymes to depolymerise cellulose and hemicellulose into fermentable sugars. According to the JBEI, this will allow a major reduction in fuel production costs by consolidating the depolymerisation of cellulose and hemicellulose into sugars, and fermenting the sugars into fuels, into a single step.

A paper in the 5288 Proceedings of the National Academy of Sciences (PNAS) describes this work. The paper is called, "Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli."

JBEI researchers engineered strains of the bacteria to express several enzymes that enable them to digest cellulose and hemicellulose. This is the first successful demonstration of the production of all three forms of transportation fuels (petrol, kerosene and diesel) using switchgrass, one of the highest potential feedstocks for advanced biofuels.

The cellulolytic and hemicellulolytic strains of the bacteria can be combined as co-cultures on a sample of switchgrass. These were further engineered with three metabolic pathways allowing the bacteria to produce fuel substitute or precursor molecules suitable for petrol, diesel and kerosene.

Related Content

  • Solar roads such as Colas’s Wattway could be the right way
    May 10, 2016
    Peter Harrop, chairman of independent research and consultancy IDTechEx, considers arguments in favour of solar roads. Nowadays a major trend is the move to off-grid clean energy created by “energy harvesting” to produce electricity where it is needed. This is more controllable and increasingly at lower cost than grid power or diesel gensets, cleaner and often less subject to interruption. It is taking new forms as revealed in the IDTechEx Research report, “High Power Energy Harvesting 2016-2026”.
  • Komatsu aims to be completely carbon neutral by 2050 
    October 27, 2022
    Komatsu has committed itself to achieving carbon neutrality by 2050 and says that by 2030 it will have halved its CO₂ emissions versus 2010. The aim is zero emissions.
  • Lighting can affect road safety
    February 5, 2013
    New research carried out jointly by the Lighting Research Center and Penn State have identified links between visibility and safety from roadway lighting. The results are said to hold promise for predicting the safety benefits of new lighting configurations. Identifying when and where to install roadway illumination is a challenge for transportation agencies. Estimating nighttime crash reductions from roadway lighting is difficult in part because lighting tends to be installed along with other improvements
  • Key transport award
    February 29, 2012
    A key research award is attracting a high-profile list of prospective candidates.