Skip to main content

Bacteria provide route to future fuels

An innovative future fuel source could be provided by bacteria, according to researchers working with the US Department of Energy (DOE). Strains of Escherichia colibacteria have been developed that are able to digest switchgrass biomass and then synthesise the sugars into three transportation fuels.
April 26, 2012 Read time: 2 mins
An innovative future fuel source could be provided by bacteria, according to researchers working with the 5275 US Department of Energy (DOE). Strains of Escherichia colibacteria have been developed that are able to digest switchgrass biomass and then synthesise the sugars into three transportation fuels.

The work has been carried out by the DOE’s 5287 Joint BioEnergy Institute (JBEI) and the initial results suggest that the bacteria can carry out this process without the need for help from enzyme additives. The JBEI claims that using the bacteria will cut a significant cost out of processing switchgrass biomass into fuel by removing the need for expensive enzymes to depolymerise cellulose and hemicellulose into fermentable sugars. According to the JBEI, this will allow a major reduction in fuel production costs by consolidating the depolymerisation of cellulose and hemicellulose into sugars, and fermenting the sugars into fuels, into a single step.

A paper in the 5288 Proceedings of the National Academy of Sciences (PNAS) describes this work. The paper is called, "Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli."

JBEI researchers engineered strains of the bacteria to express several enzymes that enable them to digest cellulose and hemicellulose. This is the first successful demonstration of the production of all three forms of transportation fuels (petrol, kerosene and diesel) using switchgrass, one of the highest potential feedstocks for advanced biofuels.

The cellulolytic and hemicellulolytic strains of the bacteria can be combined as co-cultures on a sample of switchgrass. These were further engineered with three metabolic pathways allowing the bacteria to produce fuel substitute or precursor molecules suitable for petrol, diesel and kerosene.

Related Content

  • David Barwell suggests six steps for closing the UK funding gap
    January 11, 2019
    Six steps for closing the UK funding gap Plenty of private money is seeking UK investment opportunities. The government and the infrastructure sector in general must make projects more attractive, writes David Barwell* It is widely acknowledged that the UK faces mounting economic, environmental and social problems if the nation's infrastructure fails to meet present and future demands. Government estimates propose that almost €561 billion is required to bridge the infrastructure funding gap. As part o
  • Roads for the future
    July 31, 2012
    Speakers at the 3rd European Road Congress looked at ways of preparing infrastructure to cater for future demands. Patrick Smith reports Road accidents in Europe can be reduced substantially, but vehicles will have to make more use of technology, and they will cost more. The problems will not be made any easier with the knowledge that road transport is set to double between 2040 and 2050. These were just some of the forecasts made at the 3rd European Road Congress, held in Brussels, Belgium, a key road sect
  • Twin layer paving evolves
    November 2, 2012
    Dual layer paving offers benefits to wear life as well as major cost reductions - Mike Woof reports The concept of laying the binder course and wearing course at the same time is not new to the road construction market. Various contractors have been working on systems over a number of years, with several manufacturers helping directly with these projects. A number of firms have investigated this method but three manufacturers in particular, Dynapac and Vögele in Europe and Sumitomo in Japan, have made major
  • Aluminium reinforced bridges?
    October 11, 2023
    For a bridge in Sunndal, Norway, steel reinforcement has been swapped for aluminium from Hydro, a Norwegian global producer of aluminium.