Skip to main content

Bacteria provide route to future fuels

An innovative future fuel source could be provided by bacteria, according to researchers working with the US Department of Energy (DOE). Strains of Escherichia colibacteria have been developed that are able to digest switchgrass biomass and then synthesise the sugars into three transportation fuels.
April 26, 2012 Read time: 2 mins
An innovative future fuel source could be provided by bacteria, according to researchers working with the 5275 US Department of Energy (DOE). Strains of Escherichia colibacteria have been developed that are able to digest switchgrass biomass and then synthesise the sugars into three transportation fuels.

The work has been carried out by the DOE’s 5287 Joint BioEnergy Institute (JBEI) and the initial results suggest that the bacteria can carry out this process without the need for help from enzyme additives. The JBEI claims that using the bacteria will cut a significant cost out of processing switchgrass biomass into fuel by removing the need for expensive enzymes to depolymerise cellulose and hemicellulose into fermentable sugars. According to the JBEI, this will allow a major reduction in fuel production costs by consolidating the depolymerisation of cellulose and hemicellulose into sugars, and fermenting the sugars into fuels, into a single step.

A paper in the 5288 Proceedings of the National Academy of Sciences (PNAS) describes this work. The paper is called, "Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli."

JBEI researchers engineered strains of the bacteria to express several enzymes that enable them to digest cellulose and hemicellulose. This is the first successful demonstration of the production of all three forms of transportation fuels (petrol, kerosene and diesel) using switchgrass, one of the highest potential feedstocks for advanced biofuels.

The cellulolytic and hemicellulolytic strains of the bacteria can be combined as co-cultures on a sample of switchgrass. These were further engineered with three metabolic pathways allowing the bacteria to produce fuel substitute or precursor molecules suitable for petrol, diesel and kerosene.

Related Content

  • Europe's roads need innovation and research
    February 28, 2012
    FEHRL's fifth SERRP is set to drive road transport into the 21st century
  • Europe's roads need innovation and research
    April 12, 2012
    FEHRL's fifth SERRP is set to drive road transport into the 21st century The Forum of European National Highway Research Laboratories (FEHRL) has published its fifth Strategic European Road Research Programme (SERPP V), which tackles the research and innovation challenges facing the European road and transport system now and in the future. Formed in 1989, FEHRL is a registered international association comprising more than 40 national research/technical centres, and its new programme reflects the techni
  • National Highways shoots for the moon
    July 5, 2023
    The Structures Moonshot project in England is focusing on bridge maintenance, in particular steel tendons in post-tensioned structures and reinforcement within concrete half-joints.
  • How to reduce environmental impact with Cummins Performance Series
    May 10, 2022
    There has been significant focus on alternative power solutions for off-road vehicles and equipment such as hybrid, full electric and hydrogen. Whilst these solutions will be suitable in the long term, it will take time for these technologies to be competitive and enable wider adopted in the construction industry.