Skip to main content

Zhejiang Jiashao Bridge Investment & Development Co

Located in Zhejiang Province of China, Jiashao Bridge spans the Qiantang River and connects the cities of Jiaxing and Shaoxing. The total length of the bridge project is 10.14km and carries an eight-lane expressway The Qiantang River suffers from a high flow rate of up to 7.5m/s. As the tidal range is around 7-9m, the water depth is less than 2m in time of low level tide, so ships can only move at high tide and large scale ship-lifting equipment cannot be used downstream of Jiashao Bridge. However, to
April 6, 2017 Read time: 3 mins
The high flow rate and tidal range of the Qiantang River is a challenge to vessels, as well as to the construction of the new bridge
RSSLocated in Zhejiang Province of China, Jiashao Bridge spans the Qiantang River and connects the cities of Jiaxing and Shaoxing. The total length of the bridge project is 10.14km and carries an eight-lane expressway

The Qiantang River suffers from a high flow rate of up to 7.5m/s. As the tidal range is around 7-9m, the water depth is less than 2m in time of low level tide, so ships can only move at high tide and large scale ship-lifting equipment cannot be used downstream of Jiashao Bridge.

However, to protect against the Qiantang tidal bore and reduce the construction risks under the difficult conditions, an innovative structure design was adopted for this bridge project. For the main bridge design, a six-pylon cable-stayed bridge with five 428m-long main spans is adopted. Single-pylon structure, with the top of pile caps located under the riverbed surface is used to control the water blocking rate of the bridge structure. The superstructure of the main bridge is separated by four-plane stud welding streamlined flat steel box girders. The total steel girder width reaches 55.6m.

To increase the vertical stiffness of the main girder effectively and control the temperature deformation of the whole 2680m-long main girder, an innovative double-support and hinge (DSH) system was adopted.

With the DSH system, there are two vertical supports set at both sides of the pylon for the steel box girder at the pylon bracket area, and four two-way sliding bearings for one pylon. Using the DSH system, the scale of pylons and foundations were reduced, and US$139.8 million was saved compared to traditional designs without hinges.

In order to enhance the integral stability of the structure with tall and flexible single-pile-column foundations, I-shape transversal beams were set between the separated decks. The single-pile-column substructure had a small water-blocking area, which had a small influence on hydrology. And with no pile cap, it avoided the risk of cofferdam construction from the tidal bore.

The completed Jiashao Bridge now features an elegant and integral structural design. The application of the DSH system and hinge-related technologies, including design, manufacturing, erection, monitoring, and maintenance promotes the theoretical and technical development of multi-pylon cable-stayed bridges and contributes to the promotion of multi-pylon cable-stayed bridges worldwide.

Wang Zhangxuan, vice general manager of Jiashao Bridge Investment & Development Co said, “On behalf of Zhejiang Jiashao Bridge Investment & Development Co of China, I am very grateful that the 3918 IRF Washington has awarded the 2016 Design GRAA to the Jiashao Bridge project.

It was a great challenge for the designers, CCCC Highway Consultants Co, to account for the Qiantang River tide and incorporate appropriate technical and material innovations for design and construction. I welcome bridge specialists from around the world to come to China and visit the project; we are happy to exchange and share experiences and concepts with each other.”

For more information on companies in this article

Related Content

  • New Angolan bridge offers improved connectivity
    September 30, 2013
    Drivers in Angola are benefiting from a bridge that spans the Catumbela River, taking the place of an old structure that had proven not fit for purpose. The US$35 million cable stayed bridge is located in the highway between Benguela and Lobito, around 7km from Angola’s Atlantic coast and is one of a series of new infrastructure developments in the country. Angola suffered a long period of war that impacted on its people and infrastructure. The war resulted in severe damage to the country’s road system alon
  • Formwork plays a leading role in global infrastructure projects
    June 13, 2012
    New and highly regarded existing formwork systems have been used in major recent transport-related construction projects across the globe. Guy Woodford looks at some of their applications The multi-million dollar Mississippi River Bridge project in the United State is creating a vital new gateway between Illinois and Missouri. Central to the project is the realignment and reconstruction of Interstate 70 and a new landmark bridge, featuring two pylons projecting vertically from the Mississippi river bed w
  • New bridge is spanning China’s Yangtze River
    June 28, 2013
    There is massive development in design and construction of bridges in China and the Yingwuzhou Bridge over the Yangtze River is one key project – Mike Woof reports, with assistance from Route One’s Chinese publishing partner *CMTM Called the Mother River, the Yangtze is a focal point for China politically, economically and culturally. The river has been at the heart of China’s development for millennia, its history stretching back as far as the dawn of human civilisation. The name Yangtze, or Yangzi, is its
  • Forming iconic structures
    July 18, 2012
    Specially designed and constructed formwork is being used to create some iconic bridges worldwide The Golden Ears Bridge over the Fraser River will unite the municipalities of Richmond, New Westminister and Delta in the scenic British Columbia province of Canada. The bridge, part of a CAD$800 million (US$670 million) project, is an 'extra dosed' cable stayed bridge, which means the deck will be supported by both cables and the structure itself. This design reduces the overall height of the two towers as req