Skip to main content

Solar roads such as Colas’s Wattway could be the right way

Peter Harrop, chairman of independent research and consultancy IDTechEx, considers arguments in favour of solar roads. Nowadays a major trend is the move to off-grid clean energy created by “energy harvesting” to produce electricity where it is needed. This is more controllable and increasingly at lower cost than grid power or diesel gensets, cleaner and often less subject to interruption. It is taking new forms as revealed in the IDTechEx Research report, “High Power Energy Harvesting 2016-2026”.
May 10, 2016 Read time: 4 mins

Peter Harrop, chairman of independent research and consultancy IDTechEx, considers arguments in favour of solar roads.

Nowadays a major trend is the move to off-grid clean energy created by “energy harvesting” to produce electricity where it is needed. This is more controllable and increasingly at lower cost than grid power or diesel gensets, cleaner and often less subject to interruption. It is taking new forms as revealed in the 8424 IDTechEx Research report, “High Power Energy Harvesting 2016-2026”.

Installing photovoltaics in roads seems a daft idea at first. It sounds expensive and unlikely to work unless the surface is cleaned, free of snow and ice and in direct sunlight – all too infrequent in most places. Indeed, roads are constantly dug up by utilities, repairmen and others. How do you do that with sheets of glass?

Nevertheless, a closer look reveals that most of the problems are easily overcome and even at poor efficiency, that local electricity has viable uses. US start-up Solar Roadways® has a modular system of specially engineered solar panels that can be driven upon but also carry cables. They contain LED lights to create lines and signage without paint and heating elements to prevent snow and ice accumulation. Microprocessors let the panels communicate with each other, a central control station, and vehicles. The glass has a tractioned surface which is equivalent to asphalt. So far they can only support the weight of semi-trucks but eventually these panels will be available for highways, but first will come non-critical applications such as driveways and parking lots.

Solar Roadways has completed two funding contracts with the U.S. Department of Transportation, and has been awarded a third contract in November 2015. An Indiegogo Campaign took things further and the company says on its website new in 2016 that, “Our goal is to modernize the infrastructure with modular, intelligent panels, while producing clean renewable energy for homes and businesses. We’ll be able to charge electric vehicles with clean energy from the sun, first on our solar parking lots and when we have enough highway infrastructure, while driving”.

At IDTechEx we do not see solar roads replacing power stations: do that with a field full of solar panels not transmission and maintenance over long distances on roads. However, they could be excellent for dynamic (in-motion) charging of electric vehicles possibly coupled with roadside wind turbines or tethered multicopters providing airborne wind energy (AWE) in the new jargon.

The bike path that connects the Amsterdam suburbs of Krommenie and Wormerveer is popular: 2,000 cyclists ride its two lanes daily. Back in 2014, TNO made a 70 metre stretch into the world’s first public road with embedded solar panels. Costing around €3m ($3.6m) and funded mostly by the local authority, this road is made up of rows of crystalline silicon solar cells, encased within concrete and covered with a translucent layer of tempered glass. A non-adhesive finish and a tilt help the rain wash off dirt. The panels produced roughly 30% less energy than those fixed on to roofs but when the path is extended to 100 metres in 2016, it will produce enough kilowatts to power three households, they claim.

Sten de Wit of TNO predicted that up to 20% of the Netherlands’ 140,000km of road could potentially be adapted, helping to power anything from traffic lights to electric cars. Tests have seen the solar panels successfully carry the weight of vehicles such as tractors.

Not to be outdone, a subsidiary of the French construction giant Bouygues is joining in. Minister of ecology and energy, Ségolène Royal, announced the French government would pave 1,000km (621 miles) of road with photovoltaic panels in the next five years. The project aims to supply electricity to 5 million people – about 8% of France’s population.

The road photovoltaics are being produced by a French company called 184 Colas, which is calling the project Wattway.

The panels are composed of stacked photovoltaic cells that ensure resistance and tire grip. They do not require destruction of existing roadways: they can simply be added on to them. There are issues beyond cost and servicing pipes and so on beneath them. When their heating is on, animals will lie on them and be crushed by traffic. The heating will not cope with extreme cold or with deep snow or mud. To work at all the heating will have to be connected to the grid or too expensive, short-lived, batteries needing regular maintenance unless designs improve.

Solar roads have competition. The USA is funding research into roads that harvest movement to make electricity but IDTechEx considers moving parts in such an application to be potentially troublesome. All the same, although piezoelectric walkways have not proved commercial, Pavegen is having some modest success with electrodynamic ones.

For more information on companies in this article

Related Content

  • EDGE Innovate to launch the new MC1400 handler at Hillhead
    June 17, 2016
    EDGE Innovate, a mobile material handling and recycling equipment manufacturer, is to premier its MC1400 track material classifier at the UK’s Hillhead 2016 exhibition in June. The MC1400 will be showcased at the UK's biggest live demonstration exhibition alongside EDGE Innovate’s TRM516 mobile trommel and Slayer XL slow speed shredder. The biennial Hillhead event attracts up to 17,000 visitors with more than 450 exhibiting companies already confirmed for the 2016 event. EDGE Innovate says its new MC
  • Electric dreams
    January 21, 2014
    A team of engineering and science students in the Eindhoven University of Technology in Holland have constructed the world’s first solar powered family car. This four-seater is claimed to be able to travel nearly 600km on a sunny day while carrying four people.
  • Lagos state lights up with Low Energy Designs
    June 27, 2018
    Nigeria’s Lagos state government has outsourced around a third of its street lighting under a deal with UK manufacturer Low Energy Designs. The partnership deal will see LED replace up to 10,000 lights over 300km of state roads within the next year at a cost of US$7 million, Nigeria’s media reported. Products will be from Low Energy Design’s Phoenix Ultra and Norrsken ranges. Included is the deployment of the company’s HESS - hybrid energy storage system – units of which will also be installed across the h
  • Temporary trench covers from Oxford Plastics
    January 4, 2016
    UK manufacturer Oxford Plastic Systems is aiming to increase international sales for its innovative composite road plates and trench covers. These products can be used to ensure the safety of contractors, pedestrians and vehicles during utility, cabling and maintenance projects, as well as reducing noise pollution from conventional steel road plates. Made from composite materials, Oxford Plastics road plates feature an integral flexible edge made from a PVC compound, which acts as a noise dampener when v